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ABSTRACT

A three-variable biochemical prototype involving two enzymes with autocatalytic regulation
proposed by Decroly and Goldbeter (1987) is analyzed using a topological approach. A two-
branched manifold, a so-called template, is thus identified. For certain control parameter values,
this template is a horseshoe template with a global torsion of two half-turns. This implies that
the bifurcation diagram can be described using the usual sequences associated with a unimodal
map with a differentiable maximum as well as exemplified by the logistic map. Moreover, a
type-I intermittency associated with a saddle-node bifurcation is exhibited. The dynamics from a
single time series are also investigated to determine whether it is possible to investigate the
dynamics of this biochemical model from the measure of a single concentration.

1. INTRODUCTION

Glycolytic oscillations are the prototype for periodic phenomena in biochemistry.
First observations of such self-oscillations were made by Duysens and Amesz (1957).
A review of experimental observations on glycolytic oscillations may be found in
Goldbeter (1996). The source of oscillations within the glycolytic system was first
identified by Ghosh and Chance (1964). Glycolysis represents a chain of enzyme
reactions which in yeast transforms a sugar such as glucose or fructose into ethanol
and CO,. When a hexose such as glucose 6-phosphate or fructose 6-phosphate is taken
as the glycolytic substrate, periodic behavior is observed. This observation indicates
that the source of oscillations is beyond the first two enzymes of the chain, hexokinase
and glucose-phosphate isomerase. However, when the phosphofructokinase step is
bypassed by injecting fructose 1,6-bisphosphate as glycolytic substrate, the
oscillations disappear. Periodic behavior therefore originates at the enzymic step
catalysed by phosphofructokinase. Indeed, a simple model for the
phosphofructokinase reaction generating self-oscillations was proposed by Sel’kov
(1968). An allosteric model for glycolytic oscillations was later proposed by Goldbeter
and Lefever (1972).

These models can be reduced into two-variable models and, according to the
Poincaré-Bendixson theorem, only fixed point or limit cycle may be observed. In other
terms, only periodic self-oscillations characterized by a single frequency can be
generated by such models. Since chaotic behaviors are now observed in biochemical
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systems as exemplified by the glycolysis (Nielsen et al., 1997), it is required to use a
model involving at least three variables, three being the smallest dimension of the
phase space in which a chaotic behavior may be embedded. Such a model may be built
when two instability mechanisms coupled in series are considered (Decroly and
Goldbeter, 1982). Such a model generates a large set of dynamical behaviors such as
chaotic attractors or burstings. The aim of this paper is to characterize the topology of
the typical behavior generated by the three-variable model introduced by Decroly and
Goldbeter, (1982). The model is introduced in Section 2. Hereafter, the attractor is
described in terms of first-return maps, population of periodic orbits and templates
(Section 3). Particular behaviors called intermittencies are identified (Section 4).
Section 5 is devoted to the important question: Is it possible to investigate the
dynamics from the time evolution of a single concentration? Section 6 gives a
conclusion.

2. THE THREE-VARIABLE BIOCHEMICAL MODEL

The coupling in series of two enzymes with autocatalytic regulation permits the
construction of a three-variable biochemical prototype containing two instability-
generating mechanisms (Decroly and Goldbeter, 1982). The substrate S is introduced
at a constant rate into the system; this substrate is transformed by enzyme E, into
product Py, which serves as substrate for a second enzyme E, that transforms P, into
P,. The two allosteric enzymes are both activated by their reaction product; P, and P,
are thus positive effectors for enzymes E, and E,, respectively. The system is
considered as spatially homogeneous as in the case of experiments on glycolytic
oscillations. The set of three ordinary differential equations thus reads as:

x=V-0,0,(x,y)

Y =¢,019;(x,y) = 0,0,(y.2) (1)

2=¢,0,0,(y,2) - Kz
where x, y, and z are (dimensionless) normalized concentrations of substrate S and of
the reaction product P; and P,, respectively. The normalized maximum rates of the
enzyme E; and E, are 0, and 0;. The ratios of the dissociation constants are quantified
by ¢, and ¢,. When ¢q; > 1 (g, <1), the product P, varies faster (slower) than the
substrate S. A similar feature between the dissociation constants of both reaction
products is quantified by ¢,. V denotes the substrate injection rate and K the apparent
first-order rate constant for the removal of the final product in a reaction catalyzed by
a Michaelian enzyme far from saturation by its substrate. The rate functions ¢; and ¢,
of the allosteric enzymes E, and E, are given by

x(1+x)1+y)?

o(x.y) = L+ 0+ 01+ )
_ y(l+Z)2
¢2(y,Z)— L2+(1+Z)2

For simplicity, the rate of enzyme E, depends in a linear manner on the
concentration y of its substrate, i.e. the enzyme is never saturated by it. The control
parameters are fixed to:
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It has been shown that this model goes through a period-doubling cascade when
the control parameter K is increased (Goldbeter, 1996). Beyond the accumulation
point, the asymptotic behavior settles down onto a chaotic attractor. This is the
behavior which will be characterized here.

3. TOPOLOGICAL CHARACTERIZATION OF A CHAOTIC
REGIME

An (x,y)-plane projection of a typical chaotic attractor is shown in Figure la for
V=045s" and K,=2.00. The first step of a topological characterization is to
compute a first-return map to a Poincaré section. In the case of this three-variable
model, the Poincaré section may be defined as the set

P={(x,,y,) eR’ly, =100.0, y, < 0.0}

The first-return map (Figure 1b) is constituted by two monotonic branches
separated by a critical point located at x. = 46.31. This critical point defines a partition
of the attractor which allows one to encode the trajectories by strings of symbols. Most
of the time, these symbols are chosen among integers. For instance, the increasing
branch is encoded by symbol ‘0’ and the decreasing branch by symbol “1°. Thus, a
trajectory is encoded in a string of ‘0’ and ‘1’. Obviously, the periodic orbits are
encoded by finite strings which are repeated. The population of periodic orbits
embedded within the attractor displayed in Figure la is reported in Table 1. For
instance, the period-4 orbit encoded by (1011) crosses the Poincaré section three times
in branch 1 and once in branch 0.

3250 | 50.0 //\\
\,
0 / 1
48.0
2250 / \\
= 3 \
== 46.0 \ :
Il ‘ \ \ :
1250 I 4 \ :
44.0 \\ '
250 420 \ :
25.0 30.0 35.0 40.0 45.0 50.0 55.0 42.0 44.0 46.0 48.0 50.0
x X
(a) Chaotic attractor (b) First-return map

Figure 1. Chaotic attractor solution of the three-variable biochemical model with ¥ =0.45s™
and K = 2.00. The first-return map to the Poincaré section P is unimodal, i.e. constituted by two
monotonic branches separated by a critical point. This critical point is located at a differentiable
maximum.

Since the first-return map is unimodal, i.e. has a unique critical point and has a
differentiable maximum, it belongs to the class of maps associated with the class
exhibited by Feigenbaum (1978) and, independently, by Coullet and Tresser (1978).
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As a consequence, the order of creation of periodic orbits when a control parameter is
increased can be predicted by the so-called unimodal order (Collet and Eckman,
1980). This order is also introduced with the topological characterization procedure by
Letellier et al. (1995). All the periodic orbits are thus created by saddle-node
bifurcations or period-doubling bifurcations. In the case of the three-variable
biochemical model investigated here, the order of creation of periodic orbits can be
predicted until the first-return map presents a third monotonic branch, that is until the
control parameter K; is less than or equal to 2.00. The topological structure of the
attractor is now investigated for this particular value of K.

Table 1. Population of periodic orbits embedded within the chaotic attractor. Only orbits with
period less than 8 are reported. The symbolic sequences are ordered according to the unimodal
order observed when the K -control parameter is increased. The beginning of the period-
doubling cascade may be recognized with the three orbits, (1), (10) and (1011), respectively.

S) S) S) S)
0) (1011011) (1001) (10000)
(1) (101) (1000) (1000011)
(10) (100) (1000101) (100001)
(1011) (100101) (100010) (100000)
(101111) (1001011) (100011) (1000001)
(10111) (10010) (1000110) (1000000)
(10110) (1001101) (10001)

Table 2. Linking numbers between couple of periodic orbits counted in a plane projection. All
these linking numbers can be predicted from the template shown in Figure 3.

0) 1) 10 (101)
1) -1
(10) 2 3
(101) 3 4 -8
(100) 3 4 -8 12

By topological structure, we mean counted (Figure 2) according to the
the relative organization of the periodic  following convention:
orbits in the phase space R’(x,.2).
Such a relative structure is quantified
by using linking numbers associated
with couples of periodic orbits. For
-1

instance, when the two periodic orbits
encoded by (0) and (10) are

+1
considered, the linking number /4(10,0) —
between them is equal to the half sum o
of the oriented crossings counted in a

regular plane projection. In the present
case, four negative crossings are
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The crossings are therefore signed using the third coordinate. The linking number
1k(10,0) is equal to -2 (Figure 2a). It means that orbit (10) turns twice around orbit (0)
in the negative sense or, equivalently, that orbit (0) turns twice around orbit (10) in the
negative sense. Linking numbers are computed for a large set of couples of orbits. A

few of them are reported in Table 2.
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(a) Ik(1,0) = -1
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Figure 2. Couple of periodic orbits projected in the plane (x,y). Four negative crossings are

found. The linking number /4(10,0) is therefore equal to -2.

The idea is then to find a branched manifold
on which the relative organisation of periodic
orbits can be reproduced. All the linking
numbers must be predicted by using this
branched manifold which is called a template. A
review of the topological characterization
procedure and how to find a template of an
attractor is given by Gilmore (1998). In the case
of the three-variable biochemical model, the
topological structure is described by the template
displayed in Figure 3.

A Horseshoe template is always constituted
by one odd branch and one even branch, i.e. it
has one branch with an odd number of half-turns
and one branch with an even number of half-
turns. These numbers of half-turns associated
with each branch are defined as the local torsions
(Figure 3). The global torsion designates the
number of crossings between the two branches
(Figure 3). In fact, the even branch is associated
with the increasing branch of the first-return map
encoded by 0 and the odd branch corresponds to
the decreasing branch encoded by 1.

Ny

local
torsions

global
torsions

Figure 3. Template associated
with the attractor generated by
the three-variable biochemical
model. This is a Horseshoe
template with a global torsion of
two half-turns.
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The template, which is associated with the attractor generated by the three-variable
biochemical model, corresponds to a Horseshoe template with a global torsion of two
negative half-turns (Figure 3). The even branch is associated with two half-turns and
the odd branch with three half-turns.

4. INTERMITTENCIES

When a behavior is characterized by a unidimensional map, we are ensured of
observing type-I intermittencies associated with each saddle-node bifurcation inducing
a periodic window. Indeed, in a bifurcation diagram associated with such a map, many
periodic windows are observed. Each of them appears through a tangent bifurcation,
which is also a saddle-node bifurcation. One stable periodic orbit and one unstable
periodic orbit are therefore simultaneously created. The smaller the periods of the
orbits, the more observable the periodic windows are. For instance, from the
population of periodic orbits reported in Table 1, the orbits (100) and (101) are created
through a saddle-node bifurcation and a period-3 window is easily observed in the
bifurcation diagram. With these periodic windows, an intermittent behavior is
necessarily associated. In the case of the biochemical model, the most observable
periodic window is associated with a period-1 orbit appearing for K; slightly greater
than 2.015807. At this K,-value, the first-return map is tangent to the bissecting line
(Figure 4a). Two period-1 orbits are therefore created. The periodic window is
associated with the stable orbit created by this saddle-node bifurcation appearing when

the first-return map reaches the bissecting line at the third critical point (Figure 4a).
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Figure 4. An intermittent behavior is observed for K;=2.015807, corresponding to a tangent
bifurcation. Laminar phases during which the behavior is almost periodic are interrupted by
chaotic bursts. The distribution of the laminar length / is characteristic of a type-I intermittency.
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When the concentration of substrate (or any reaction product) is measured slightly
before the bifurcation, an intermittent behavior is observed (Figure 4b). This particular
feature results from the fact that the trajectory visits the thin canal between the
bissecting line and the first-return map. The trajectory thus stays very close to the
stable periodic orbit bifurcation for a long time. It will be created by the saddle-node.
This is the so-called laminar phase. From time to time, the trajectory escapes from this
thin canal and evolves on the chaotic attractor. A chaotic burst is thus observed
(Figure 4b). Consequently, the intermittent behavior is almost periodic for a finite
time, interrupted by chaotic bursts before being reinjected into the thin canal. Such a
scenario has been theoretically predicted by Pomeau and Manneville (1980).

At least three types of intermittency exist, each of them being associated with a
specific reinjection mechanism. They are distinguished by a distribution P(/) of the
laminar length / which is characteristic of the reinjection mechanism. Such a
distribution computed for the intermittency just before the period-1 window is
displayed in Figure 4c. It exhibits two characteristic lengths, one around 860 s which
is associated with the short laminar phases while the other is around 12500 s and is
associated with the long phases. The histogram of the distribution of the laminar
lengths is characteristic of a type-I intermittency as expected when a saddle-node
bifurcation is involved (Figure 4c).

5. ANALYSIS OF THE THREE-VARIABLE BIOCHEMICAL
MODEL THROUGH A SINGLE VARIABLE

When investigating a glycolytic reaction, an important question must be faced:
Shall all the concentrations be measured to investigate the global dynamics? Indeed,
one of the most interesting results from the theory of nonlinear dynamical systems is
that the description in the phase space of the dynamics does not necessarily require the
knowledge of all the dynamical variables involved in the full description of a state of
the system. According to the information redundancy principle, a time series
corresponding to the time evolution of a single reaction product or substrate may be
sufficient to provide the relevant information to investigate such a chain of enzyme
reactions. Thus, according to the Takens’ theorem (1981), the phase portrait may be
reconstructed from a single scalar time series, e.g. the time evolution of a single
species, by using time delay or derivative coordinates. The reconstructed phase
portrait is thus expected to be diffeomorphically equivalent to the original one which
is usually not measurable, i.e. all the dynamical variables spanning the phase space
cannot be simultaneously recorded. For instance, one may easily imagine that it could
be quite difficult to simultaneously measure the concentrations of the two reaction
products for investigating this biochemical oscillating reaction.

When one uses a single time series, one may be ensured of having the best quality
for the reconstructed phase portrait when a diffeomorphism between the reconstructed
phase portrait and the original one is found. Such a quality may be obtained when the
embedding dimension d is sufficiently large. According to Takens’ theorem, it must
be greater or equal to 2Dy + 1 where Dy ideally refers to the Haussdorff dimension
which could be conveniently approximated by the correlation dimension estimated
with the algorithm proposed by Grassberger and Procaccia (1983). Theoretically, i.e.
with an infinite amount of data without any noise, all the dynamical variables may be
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used. Unfortunately, when one is facing data from the real world, time series are
necessarily corrupted by noise and discretized in time, such equivalence is not always
observed and we may find that some variables are better than others (Letellier et al.,
1998a). Such an annoyance may be amplified by the non-availability of data with
sufficient quality as often observed in studying biological systems. It is therefore
rather important to state whether the biochemical model may be equivalently
investigated from any time series of one concentration of a product or substrate
involved in the reactions.

Here we will say that two dynamical variables are equivalent when they will
induce reconstructed phase portrait characterized by the same template. In order to do
s0, a reconstructed phase portrait must be built starting from a single scalar time series
{U;} which may be constituted by the time evolution of one of three dynamical
variables of the biochemical model, i.e. x, y or z. The reconstructed phase portrait is
then spanned by using delay coordinates

(U@, U +7),U(t+27),...Ut+(dy —17T)}
or the derivative coordinates
d="'U(r)
PR

Gibson et al. (1992) showed that both coordinate sets are equivalent. Indeed, a map
being a rotation and a rescaling may always be found between a phase portrait
reconstructed with the delay coordinates and the derivative coordinates. Let us choose
the derivative coordinates. In order to know how many coordinates are required to
properly reconstruct the phase portrait, the so-called embedding dimension has to be
estimated. Such a dimension corresponds to the minimum number of coordinates
required to reconstruct a phase portrait for which the trajectory does not present any
self-crossing. Such self-crossing are forbidden by the deterministic character of the
dynamics investigated since a self-crossing necessarily induces two different future
states for a single present state. The embedding dimension may be computed by using
the false nearest neighbors’ method (Abarbanel et al., 1993) for which an improved
algorithm has recently been proposed by Cao (1997). The latter is used here. For the
three variables of the biochemical model, the embedding dimension is equal to 3
(Figure 5). Note that using the correlation dimension for such a system is typically
between 2.0 and 3.0 and, consequently, the dimension suggested by the Takens’
criterion would be at least 5. Such a high dimensional space would be required to be
ensured that a diffeomorphism exists between the original unknown phase portrait and
the reconstructed one. Nevertheless, it often appears that a less dimensional space is
sufficient and most of time a phase portrait may be properly reconstructed in a space
which has a dimension equal to the dimension of the original phase space. Indeed, the
Takens’ criterion should be considered as the upper limit for which a diffeomorphism
can be identified between the original phase portrait and the reconstructed phase
portrait. In the present case, 3 is the smallest dimension for reconstructing the phase
portrait since no chaotic behavior would not be identified with a smaller dimension.
The reconstructed phase space may be therefore spanned by the three variables reading
as:

(U©,U0),U0(0), ..., }
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Figure 5. Plane projections of the three phase portraits induced by the three variables of the
biochemical model. The embedding dimension has been computed from each time series using
the Cao’s algorithm. In the three cases it is found that the reconstructed phase portrait can be
embedded in a 3D phase space. The index E;(d) measures the relative change in the average
distance between two neighbour points in R? and their respective images in R”"! when the
dimension of the reconstructed phase space is increased from d'to d + 1.
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Plane projections of the three induced phase portraits are displayed in Figure 5.
Nevertheless, all the induced phase portraits do not have the same shape. For instance,
the phase portrait induced by the x-variable, i.e. the concentration of the substrate,
does not present any region where different trajectories are difficult to distinguish.
Such a nice property guarantees an easy topological characterization. Indeed, when
such regions where different trajectories are not well distinguished, it becomes rather
difficult to count the linking numbers and, consequently, it is much more difficult to
extract a template. Nevertheless, it is possible to show that these three induced
attractors are characterized by the same template as the original phase portrait as well
as exemplified by their first-return map (Figure 6) which is very similar to the one
computed from the original phase portrait (Figure 1b).
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Figure 6. First-return maps of the three phase portraits induced by the three variables of the
biochemical model. All of these maps are similar to the one computed for the original phase
portrait, i.e. is a unimodal map with a differentiable maximum.

In order to show that the observability of the dynamics is smaller from the
y-variable than from the x-variable, a stochastic perturbation of a small amplitude
(around 0.01) is added during the integration process to simulate a real time series.
This is the so-called multiplicative noise. A time series is thus recorded at a sampling
rate equal to 50 Hz. As done when real data are investigated, a slight smoothing is
applied using a window of 8 points. The derivatives are thus computed by analytically
deriving a polynomial fitted using a Singular Value Decomposition (SVD)
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(Broomhead and King, 1986) as already used for experimental data by Letellier et al.
(1998b). Two time series, recorded and processed in the same conditions, are
investigated. In any case, the multiplicative noise has developed the chaotic regime as
currently observed. In addition to such a feature, the phase portrait may be affected
during the reconstruction procedure. From the phase portrait reconstructions shown in
Figures 7, it is easily seen that the x-variable which induces a portrait is not affected
by the noise too much (at least it preserves its global shape) while the y variable
presents an induced phase portrait quite significantly affected by the noise. Moreover,
since the phase portrait did not present a clear hole in the middle of the y-induced
attractor, the portrait reconstructed from the noisy y time series becomes very difficult
to investigate. Indeed, in that case, it is almost impossible to safely compute a
Poincaré section. Consequently, the experimentalist will take advantage of measuring
the concentration of the substrate rather than those of the reaction products to
investigate a reaction involving two enzymes with autocatalytic regulation.
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(a) x-induced attractor (b) y-induced attractor

Figure 7. Phase portraits reconstructed from the x and the y variables when a multiplicative
noise is superimposed on the dynamics. The time series processings are similar for both time
series, i.. a sampling rate equal to 50 Hz and a window for smoothing the data equals 8 points.

6. CONCLUSION

A three variable biochemical model describing the coupling in series of two
enzymes with autocatalytic regulation has been analyzed by using a topological
approach. The chaotic attractor generated by this system is thus described in terms of
a template which corresponds to a Horseshoe template with a global torsion of two
negative half-turns. Such a template defines a class of dynamics which could be
related to the class introduced by Thomas (1999) and described in terms of feedback
circuits deduced from the jacobian matrix of the system. This very important link will
be carefully investigated elsewhere.

The three-variable biochemical model has been characterized by a unidimensional
map and, consequently, saddle-node bifurcations and intermittencies are associated
with periodic windows in the bifurcation diagram. Such a feature suggests that
glycolytic oscillations may present a seemingly periodic behavior which will be
interrupted by chaotic bursts. The lengths of the periodic phases are not constant. Two
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main lengths are identified, one short and one long, as theoretically predicted for a
type-I intermittency.

Finally, it has been shown that the dynamics of this biochemical reaction may be
investigated from the time evolution of a single concentration. Although a higher
dimensional description could be required in that case, it has been shown that the three
induced attractors are topologically equivalent to the original phase portrait.
Nevertheless, the dynamics are easier to investigate when the substrate concentration
is recorded rather than the concentration of one of the two reaction products.
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