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Unimodal order in the image of the simplest equivariant chaotic system
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The simplest equivariant chaotic dynamics is investigated in terms of its image, i.e., understhe 2
mapping allowing one to obtain a projection of the dynamics without any residual symmetry. The inversion
symmetry is therefore deleted. The bifurcation diagram can thus be predicted from the unimodal order although
the first-return map computed in the original phase space exhibits three critical points. This feature is the same
as the one observed on the Burke and Shaw system although this latter system has a rotation symmetry.
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Symmetries have always played an important role in Before investigating the dynamical behavior of this equi-
physics, from fundamental formulations of basic principlesvariant chaotic system, let us give a comment on recent de-
to concrete applications, and are present in a variety of charelopments in the classification of nonlinear dynamical sys-
otic systems. Among them, there is the well-known Lorenztems. Thomas and Kaufmd,6] showed that dynamical
system[1] which has a rotation symmetry. This system wassystems can be interpreted in terms of feedback full circuits.
the simplest chaotic flow up to 1976 whend_ter[2] de- In particular, the description of dynamical systems by feed-
leted all the irrelevant terms from the Lorenz system forback circuits is associated with their fixed points. Such a
obtaining chaotic behavior. The Bgler system no longer has description could provide a way for classifying dynamical
symmetry properties. systems directly from their algebraic form. Among the dif-

During the last five years, some work has been devoted téerent feedback circuits, those involving all the dynamical
the search for the simplest set of equations that can generatariables play a preponderent role in the dynamical behavior
a chaotic behavidi3]. Most of the time, very simple systems since they are the only ones that may be associated with the
may be written in the form of autonomous third-order differ- fixed points of the systems. These circuits are the so-called
ential equations full circuits [6]. The full circuit of anm-dimensional system

o may be identified using thenfactor products, the so-called
x=F(x,%,X). (1) loop products, appearing in the characteristic equation asso-
ciated with the Jacobian matri [6]. In the case of three-
Such systems are under study in this paper. Recently, one gfmensional(3D) systems, the determinant consists of six
us[4] proposed the algebraically simplest example of a disioop products, which are
sipative equivariant chaotic system. It consists of three terms
including one quadratic nonlinearity: Det(A) =aj18,,833~ 811823837~ 815821833~ 12823831

K= — aX+ XX—X. ) 23383821~ 213831822 5

This system can be rewritten as a set of three ordinar dif:rhus’ six full circuits may be associated with a 3D dynami-
Y ; Y dzal system. In the present case, the Jacobian matrix is
ferential equations

. . ) ) 0 1 0
X=Y, =27, Z=—azZ+Xy"—X, 3
Y.y a y () A=| O 0 1] ©)
where y=x and z=x. This system is equivariant, i.e., it y>—1 2xy —a

obeys the relatiory- f(x) =f(y-Xx) wherey is a 3X 3 matrix

—\2_1 i
defining the symmetry properties. In the present casejythe and consequently, only the loop prodagia,sas;=y-—1 is

different from zero. Note that, when the chaotic dynan(igs

matrix are considered, only a single full circuit can be obtained. The
-1 0 0 different types of dynamics will be distinguished by the fixed

points and their associated domain where the circuit is either

y=| 0 -1 0 4 positive or negative. For instance, one negative circuit is a

0 0o -1 prerequisite for a periodic oscillation and the existence of

one positive full circuit a prerequisite for multistationarity.
defines an inversion symmet®. This means that the vector ~ The circuit associated with the simplest equivariant cha-
field f is invariant when X,y,z) are mapped into{x,—v, otic dynamics isambiguous i.e., its sign depends on the
—2z). The system3) has a single fixed poirfe, located at location in phase space. Whin< 1, the full circuit is nega-
the origin of the phase space. It is a saddle focus with onéve. It is positive otherwise. The fixed poift, is located in
negative real eigenvalue and two complex conjugate eigerthe domain where the circuit is negative. Since the full cir-
values with positive real parts. cuit is “pure” in the sense that its loop product does not
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FIG. 2. Bifurcation diagrams versus for the simplest chaotic

FIG. 1. Chaotic attractor generated by the simplest equivarianflynamics(3) and its image.
chaotic system just before the attractor merging crisis (
=2.027717). occurs fora~2.0644. For smaller values ef, a single at-
tractor invariant under the action of is observedas well
contain any on-diagonal elemeag , it should be associated exemplified in Fig. 1
with a fixed point that is a saddle focus. When a pure full When «<2.0644, the single symmetric chaotic attractor
circuit is negative(positive), the real eigenvalue is negative is characterized by a multimodal map which may have up to
(positive) and the real parts of the conjugate complex eigenthree critical points as observed far=2.027 717(Fig. 3).
values are positivénegative. In the case of the chaotic sys- Periodic orbits are thus encoded on the symbol Sgt
tem (3), the fixed point~ is located in the domain of phase ={1,0,1,3. In that case, the bifurcation diagram cannot be
space where the full circuit is negative. This is in agreemenpredicted by the kneading theory. Indeed, when more than
with the fact that it is a saddle focus characterized by ane critical point is involved, there is no longer universal
negative real eigenvalue. The full circuit is therefore activeorder for the creation/destruction of periodic orbits when a
in the domainly|<1. The other domain is irrelevant for the control parameter is varied.
topology of the dynamics. Nevertheless, when an equivariant system is considered, it
When «=2.027 717, a chaotic attract@Fig. 1) is ob- may be possible to simplify the analysis by determining the
tained when the initial conditions are X{,Yg,Z) symmetry properties. Such a procedure was initially intro-
=(4.0,0.0,0.0). The symmetry with respect to the origin ofduced by mapping the dynamics in a fundamental domain of
the phase space may be easily checked. This attractor is ithe phase spad®] and recently developed by using the im-
vestigated using the Poincasection age of equivariant systenj40], i.e., the 2-1 mapping of
the system to obtain a projection of the dynamics without

: any residual symmetry. The dynamical syst&j which is
PO:{(XnaZn)ER2|yn:Ovyn<0}- (7)

-4.25 T T T

A bifurcation diagram[Fig. 2(a)] is computed versusy
within the interval[2.027 717;2.12 When « is decreased, -4.00 |
two simultaneous period-doubling cascades are observec 1 o/ 1
one being the symmetric image of the other under the actior 375 b / \
of y. After the accumulation point fot=2.0840, the behav- i
ior becomes chaotic. Depending on the initial conditions, , a0k \
two attractors, symmetric in phase space, are observed. Thi ! '
feature persists up to an attractor merging crisis. This crisis
corresponds to a sudden increase in the size of the chaoti
attractor[Fig. 2(@)] and results from two attractors that col-

lide to form a single symmetric attract¢7]. In fact, the -3.00 3
crisis appears when each attractor is characterized by a un
modal map for which the symbolic dynamics is complete, -275 : . . . '
. . . . . =275 -3.00 -3.25 ~3.50 -3.75 -4.00 -4.25
i.e., all periodic orbits that may be encoded using two sym- X
bols are embedded within the attractor. Within this interval

for the « values, the bifurcation diagram can be predicted FIG. 3. First-return map of the simplest equivariant chaotic sys-
from the unimodal ordef8]. The attractor merging crisis tem just before the attractor merging crisis= 2.027 717).
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FIG. 5. First-return map of the image system of the simplest

FIG. 4. Image of the simplest equivariant chaotic system justequivariant chaotic system just before the attractor merging crisis

before the attractor merging crisia€2.027 717). (@=2.027 717). A similar map may be obtained using thevari-
able.

invariant under inversion symmetry, is thus mapped into a
locally equivalent dynamical system. This is done by con-yodal for a=2.027 717(Fig. 5 and not trimodal as ob-
structing a nonlin(_ear coordina;e transformatiom,y(_z) served in the original phase spa@dg. 3). The increasing
—(Uy,Uz,Ug) in which the coordinatesu,u,,us) are in-  pranch touches the bisecting line. The symbolic dynamics is
variant under the inversion symmetfy. The elementary thys complete. A mapping of a four-branch first-return map
polynomials in ,y,z) of degree up to 2, which are invariant jnto a unimodal map when the symmetry of a system is
under P, arexy, yz, zx, x?, y* andz’. The following  removed has already been observed in the Burke and Shaw

coordinate transformation is convenient: system[9]. The analysis that was performed can be repro-
o o duced for the simplest chaotic equivariant system.
Ur=x"=y" When the 21 mappinge is applied, an orbit embedded
o= | Upy=2xy, (8)  within the original attractor is transformed into an orbit em-
Ug=22. bedded within the image attractor. A mdp from symbolic

_ sequences witp symbols on the se¥,={1,0,1,2 to sym-
The invariant dynamical system equatiap=g;(u) where bolic sequences of2symbols on the set,={0,1} can be

u=(uy,U,,us) is determined in a straightforward way: defined ag9]
. _&Ui &Xl _ &Ui = _ 9 (I)(T)—]_O
u‘_a_xjm_ﬁ_xj i(X)=gi(u). )] =10,
| ®(0)=11,
Using 22=p+u, and /2= p—u, wherep=/u?+u2, the = ®(1)=01, (12

invariant equations of the chaotic systé&) are

Up=U,=\(p—Upus,  Up=p—u;=\(p—uy)us,
(10 This transformationb maps symbols in blocks of the same
parity. For instance, the orbit encoded b_qu_]o in the origi-
V(p+ug)us. nal system is encoded @(Tll)oz (100101) in the image
system. It may also appear that two different original orbits

The image attractaiFig. 4) can also be obtained by applying are mapped into Fh.e same' ‘Eage orbit. For insta.nce, this is
the mape onto the original attractor. No residual symmetry the case of the original orbits (1), and (210)c which are

d(2)=00.

u;

L|3:_ZCYU3i P -1

can be identified. both mapped into the image orbit (100101)This is the
The image attractor is investigated using the Poinsage ~ consequence of the-21 mapping which allows us to obtain.
tion the image system from the original system. Both periodic
orbits appear simultaneously when a control parameter is
P,={(Uyn,Usz,) € R?Up ,=0,u,,<O}. (11)  varied. These connected orbits are therefore characterized by

a unique orbit in the image system. Consequently, when the
Since the Poincareection is unidimensional, a first-return map® is inverted and applied to such an orbit, two different
map to this Poincarsection may be built with a single vari- symbolic sequences are obtained from the single one in the
able to define the partition of the attractor. The map is uniimage system.
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TABLE 1. Evolution of the orbit spectrum of the simplest equivariant chaotic system in the range
[2.027 717,2.12from the unimodal order. Certain orbits are not present in this table since they are obtained
from higher periodic orbits. Let us note the exception of the dditwhich is not mapped to an orbit whose
period is doubled due to the fact thd) identifies with(11), which is mapped t¢0) by Eq. (13).

() (S)o=d"Y(9), () (S)o®X(S),

1 0 10011 11020

10 1 1 100111 110 200
1011 10 10 100110 1 201
101110 101 101 1001 Etl 20
101111 100 100 1000 1 21
10111 10010 100010 1 211
10110 10111 100011 0 210
101 101 10001 12021

100 112 10000 122
100101 111 210 100001 121 220
10010 11121 100000 122 221

Since there is a nonambiguous correspondence betweean be constructed. From the bifurcation diagfédig. 2(b)]
orbits from the original attractor and orbits from the imagecomputed for the image system, it may be noted that this

attractor, the inverted magp ~* defined as attractor merging crisis of the original system appears when
the attractor is no longer a period-2 chaotic band, i.e., when
@‘1(10)=T, the two branches resulting from the period-doubling cascade

become a single onexn=2.0644). This feature occurs just

—1_ ®1(11)=0, (13) after the saddle-node bifurcation that induces the two orbits
d1(01=1, encoded by(101110 and (101112, respectively. In Table I,
®-1(00)=(2) the reported orbits have a period too small to allow an accu-

rate localization of the attractor merging crisis in the bifur-
allows us to predict the symbolic sequences of the orbitgatloor?edtl)?%aems.im lest equivariant chaotic systems has been
within the original attractor from the orbits embedded _V\_/ithin investigated usingpits imgge system. It has )E)een shown that
: ) . Mts bifurcation diagram can be described from the unimodal
applying a circular permutation toward the left on the sym-ger ysing a nonambiguous map applied to the symbolic
bolic sequence of the original orbit. For instance, from thesequences of the periodic orbits embedded within the image
sequence (101100) the sequence (), is obtained. The attractor. Such a feature was already observed on the Burke
sequence of the second orbit is obtaineddas'(011001) and Shaw system, which has a rotation symmetry rather than
—(111),. When a single orbit must be obtained, the transhe inversion symmetry observed on this equivariant chaotic
formed sequence unddr! is not changed under any circu- SyStém. This scenario is therefore more general than initially
lar permutation over the symbols. expected. One should note that the images of the Burke and

Thus, it is possible to predict the evolution of the orbit Shaw system and the simplest equivariant chaotic system
spectrum associated with the original attractor from the uniconsidered here have the same template, corresponding to a
modal order identified in the image systéfable ). In par-  horseshoe template with a global half tumn.

ticular, the attractor merging crisis between both attractors ¢ | . wishes to thank Rén&homas and Marcelle Kauf-
occurs when the first periodic orbit, with a symbolic se-man for helpful discussions on the description of dynamical
guence containing at least once each symhbol0l and 1, systems with feedback circuits.
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