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The Hodgkin-Huxley model

The Hodgkin-Huxley model is a 4-dimensional nonlinear model which reproduces fairly

the action potential of many types of neurons. It can generates chaotic solutions.

Alan Lloyd Hodgkin and Andrew Fielding Huxley described the model in 1952 to explain 

the ionic mechanisms underlying the initiation and propagation of action potentials in 

the squid giant axon. They received the 1963 Nobel Prize in Physiologie or Medicine 

for this work. 



The FitzHugh-Nagumo model

It is a 2-dimensional approximation of the 4-dimensional nonlinear Hodgkin-Huxley model

However due to the Poincaré-Bendixon theorem, it cannot have chaotic solutions. 

This electrical model consists of a voltage variable v

(membrane potential) with a cubic non-linearity that

allows regenerative self-excitation via a positive 

feedback, and a recovery variable w, which describes the 

combined effect of ion channels, with a linear term that

affords a slower negative feedback.

C is a capacitor, R a resistor and L an inductor

with parameters I, a, b and T.

With the change of variable x = v, y = w,          

the system becomes a slow-fast system



The fractional FitzHugh-Nagumo model

In 1983, Jonscher demonstrated that an ideal capacitor having integral constitutive 

equation cannot exist in nature. 

A more realistic capacitor was proposed in 1994 by Westerlund & Ekstam with a fractional

constitutive equation:

In 1991, Westerlund had already proposed a better constitutive relation

for the inductor :

Based on these observations Liu & Xie introduced in 2010, the fractional

FitzHugh-Nagumo model,

where and        are

constants related to the

loss of the capacitor and

the proximity effect of fractional vs integer

the inductor.



Fractional derivatives

The idea of fractional calculus has been known since the development 

of the regular calculus and it means a generalization of integration 

and differentiation to arbitrary order. There exist several definitions of 

the fractional derivatives known since centuries:

(the first example is a letter from Liebniz to the french mathematician

L’Hospital in date of  September 30, 1695, about the existence of the 

half-order derivative).

They are used for modelling numerous physical systems: dielectric

polarization, visco-elastic systems, electrode-electrolyte

polarization, …

In this presentation we consider both the Riemann-Liouville and the 

Caputo’s definition (1967).

We will use also the Grünwald-Letnikov’s definition for numerical

simulations.



The Riemann-Liouville definition

Using the classical Gamma function

which verifies

It is possible to write also this definition:

where is the integral Riemann-Liouvile operator
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Caputo’s definition

Remark: Caputo’s definition as well as Riemann-Liouville’s one are

depending upon a parameter a because fractional derivatives are

non-local and show a memory effect

which can be also written

In both definitions , 

Those definitions are equivalent under some conditions.

Fractional derivatives have also special relationships with the Laplace 

transform as for example:
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Examples of fractional derivative (Caputo’s definition)
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Examples of fractional derivative (Caputo’s definition)

2: ( ) , : ( ) 2 , : ( ) 2f t f t t f t f t t f t f t   → = → = → =

(1 )
1 12 2( ) (2 )

0 1 ( ) ( )
(1 ) (2 )(1 ) (1 )

t
C

a t
a

t a a t
For D f t t d

−
 −− − + −

   = −    =
 − − −  −

(2 1) 2
0 2

0

2( 0) (2 0 0) 2
( ) ( )

(2 0)(1 0) (1 0) 2

C

t

t t t
D f t t f t

−−  + −
= = = =

− −  −

0,1 1.9

0

0,3 1.7

0

0,5 1.5

0

0,7 1.3

0

0,9 1.1

0

( ) 1.0945 ,

( ) 1.2948 ,

( ) 1.5045 ,

( ) 1.7024 ,

( ) 1.9116 ,

C

t

C

t

C

t

C

t

C

t

D f t t

D f t t

D f t t

D f t t

D f t t

=

=

=

=

=



Fractional dynamical systems

Consider the fractional-order initial value probleme in terms of Caputo derivative:

(1)

It can be converted to the Volterra integral equation

Theorem [Diethelm, 2001]: if the function is continuous and satisfies

the lipschitz condition on        , then for each the initial value problem (1) has

an unique maximal continuous solution         .

One can compute the flow

: n nf U  →

U 0x U



Classical and Fractional dynamical systems

Fractional differential equations are used to describe systems with long-range interactions

or systems with power-law memory.

1/ a classical dynamical system is a semi-group on an open set 

Among the properties of semi-group its flow verifies  

2/ a fractional dynamical systems is not 

a semi-group equation. It is not local: the

solution of a fractional order equation on

time t depends on its memory from the

starting time t0 to t.

In fact, fractional differential equations are integro-differential equations.



Stability of the fixed points of a fractional system

Theorem [Matignon, 1996]: The following fractional-order linear autonomous system

Is locally asymptotically stable if and only if the eigenvalues of the Jacobian matrix 

verifies

Theorem [Abdelouahab et al., 2010]: Let      be an equilibrium point of the fractional-order

nonlinear system 

If the eigenvalues of the Jacobian matrix                             

satisfies

then the systems is asymptotically stable at the equilibrium point       . 



Stability of the fixed points of FitzHugh-Nagumo

Fractional system

We consider the FFHN model

(2)

with

In order to observe a unique fixed point in the FFHN model, we restrict the set of 

parameters I, a, b and T.

Proposition :                             satisfying

The system has a unique equilibrium point

where ,

and



S-asymptotically T-periodic solutions

The non-existence of periodic solutions of fractional-order autonomous systems with bounded lower

terminal was proved in 2009 by Tavazoei & Haeri. The existence of periodic solutions with

unbounded lower terminal (i.e.                   )  was proved by Yazdani & Salarieh in 2011.

Two new definitions were introduced in 2015 by Yang et al.

Let                            denote the space of continuous and bounded functions

equipped with the norm

Definition : a function is called asymptotically T-periodic, if there exists a bounded

continuous T-periodic function and a bounded continuous function with

such that . The set of these functions is denoted by 

Definition: a function is called S-asymptoticallyT-periodic, if there exists

such that . In this case         is said to be an asymptotic period of 

The set of these functions is denoted by 

Both sets and                                  equipped with the norm are Banach

spaces.  Moreover one has : 



Hopf Bifurcation

The classical Hopf bifurcation happens when a stable fixed point lost its stability

to a periodic solution

However a fractional order equation cannot displays periodic solution.



Hopf-Like Bifurcation (HLB)

Since periodic solutions of fractional-order autonomous systems do not exist implies that

the classical Hopf bifurcation does not exist for such systems.

Therefore we introduce the paradigm of Hopf-Like Bifurcation when a fixed point changes its stability

property as a pair of complex conjugate eigenvalues of the Jacobian matrix at the fixed point

cross a boudary of an angular sector of the complex plane, giving rise to a

small amplitudeS-asymptotically T-periodic solution.

Hopf-Like Bifurcation for the Fractional-order FitzHugh Nagumo Model:

To analyze the HLB in system (2) at its unique fixed point with respect to the

parameter b, we define the function

Theorem: Let the fractional order be fixed and b* be the value of the solution b to                          .

If                                    and

Then the system (2) undergoes an HLB at the unique equilibrium E when b = b* 



Canard (Duck) and Mixed-Mode Oscillations

Consider the famous Van der Pol equation [Van der Pol, 1926] described in the Lienard

plane: (3) (it is a slow-fast system when is small)

In 1981, Benoît, and Diener M., Diener F., discovered the « canard » trajectories :

Un « explosion » of the size of the solution :

Slow manifold

(a) : a = 0,998740451244, (c): a = 0,998740451246



Mixed-Mode Oscillations (MMO)

The Mixed Mode oscillation arises in slow-fast systems when the solutions display some

specific patterns called (MMO) : L large amplitude oscillations are followed by s small

amplitude oscillations. Such patterns are denoted simply Ls

Such patterns are very common in the original 4-D model of Hodgkin-Huxley, modelling

the spikes observed in action potential of many types of neurons.

The 4-D Hodgkin-Huxley model displays also chaotic solutions.

We can show that (MMO) arise also in the Fractional FitzHugh-Nagumo 2-D model, and

more important : chaotic oscillations are observed in this 2-D model, which cannot be the

case in integer 2-D ODE, due to the Poincaré-Bendixon theorem.



Canard cycles in the FFHN model

The Fractional FitzHugh-Nagumo 2-D model, is a slow fast system:

The frozen system reads:

and the slow critical manifold is:

In blue stable part

of the critical

Manifold

In green unstable

part



Canard cycles in the FFHN model

One can observe numerically such kind of MMO:

For a = 0,75, I = 0,41,     = 0.05 and b = 0.815



Canard cycles in the FFHN model

For a = 0,75, I = 0,41,     = 0.05 One can observe numerically the increasing number of 

small oscillations:

12 solution for b = 0,7863948204251



Canard cycles in the FFHN model

For a = 0,75, I = 0,41,     = 0.05

13 solution for b = 0,7863948204252



MMO versus parameter 

NSAO = number of small oscillation between two large ones:



MMO versus parameter 

NSAO = number of small oscillation between two large ones versus 

Moreover one can compute chaotic solutions for the FFHN model!



Thank you for your attention
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