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Introduction

Introduction
Overview

What is system identification?
How is it accomplished?

Testing and data collection

Choice of model class

Structure selection

Parameter estimation

Model validation
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Introduction

Introduction
Black-Box Identification

S M
ZN

Figure: Simplified schematic diagram for black-box identification, where
S represents the system that should be approximated by a model M which is
built from a set of measured data ZN of length N.
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Introduction

Introduction
Grey-Box Identification

S M
ZN

I

Figure: Simplified schematic diagram for grey-box identification, where
S represents the system that should be approximated by a model M which is
built from a set of measured data ZN of length N and auxiliary information I.
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Introduction

Introduction
Grey-Box Identification: Questions

1 What kind of auxiliary information I is useful?

2 How does I relate to the model class?

3 Assuming that I is compatible with the model class, how do we
actually use I in determining the final model?
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Using Auxiliary Information

Using Auxiliary Information
Types of Auxiliary Information

For linear systems:

1 DC gain;

2 stability.

For nonlinear systems:

1 static function (calibration curve);

2 steady-state data;

3 number, position and symmetry of fixed points;

4 fixed point bifurcations;

5 hysteresis.

Prof. Luis A. Aguirre (DELT/UFMG) Toulouse, 9–11 October, 2023 7 / 26



Using Auxiliary Information

Using Auxiliary Information
Steady-state data: An example

Given the model structure:

y(k) = θ1y(k − 1) + θ2y(k − 2) + θ3u(k − 1) + θ4u(k − 2)2

+θ5u(k − 1)u(k − 2) + θ6u(k − 2)

and the data sets ZN = [u(k), y(k)], k = 1, 2, . . . ,N and I : ZM
ss = [ū, ȳ],

where ū = [ū1, . . . , ūM ]T and ȳ = [ȳ1, . . . , ȳM ]T. The aim is to estimate
the parameters from ZN such that the final model has Zss, say [ū3, ȳ3] and
[ū7, ȳ7] as steady-state solutions.

In order to use a Constrained Least Squares Algorithm, the constraints
must be represented in the form: S θ̂ = c.

Prof. Luis A. Aguirre (DELT/UFMG) Toulouse, 9–11 October, 2023 8 / 26



Using Auxiliary Information

Using Auxiliary Information
Steady-state data: An example

The model in steady-state yields:

ȳ = (θ1 + θ2)ȳ + (θ3 + θ6)ū + (θ4 + θ5)ū2.

Hence the two constraints are

ȳ3 = (θ1 + θ2)ȳ3 + (θ3 + θ6)ū3 + (θ4 + θ5)ū23

ȳ7 = (θ1 + θ2)ȳ7 + (θ3 + θ6)ū7 + (θ4 + θ5)ū27 ,

which can be rewritten as c = Sθ with

c =

[
ȳ3
ȳ7

]
; S =

[
ȳ3 ȳ3 ū3 ū23 ū23 ū3
ȳ7 ȳ7 ū7 ū27 ū27 ū7

]
.
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Learning reaching motions by demonstrations

Teaching Robots
The problem

Figure: Teaching a robot by demonstration.
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Learning reaching motions by demonstrations

Teaching Robots
The challenge

To program a robot to reach a certain location;

Provide a trajectory to be followed;

How to define the trajectory?

Instead of providing a trajectory what if we provide a vector field for
which infinite trajectories can be obtained, one for each possible
initial condition?

Then, a vector field becomes a trajectory-producing mechanism.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
Co-workers

Rafael Santos (UNIFEI, Itabira)

Guilherme Pereira (UFMG, West Virginia University)
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
Aim

 

 

Figure: (Blue) vector field; (red) set of possible trajectories; (green shade) basin
of attraction of the target, indicated by the green circle.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
Requirements

The models must be autonomous;

The target must be a stable fixed point;

The basin of attraction should cover all demonstration data;

The distance between demonstration data and the boundary of the
basin of attraction should be the largest possible.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
The teacher (demonstrations)

Figure: Three trajectories provided by the teacher. About 10% of the cases for
black-box techniques.
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Learning reaching motions by demonstrations

Using Auxiliary Information
A simple example

y(k) = θ1y(k − 1) + θ2y(k − 2) + θ3y(k − 1)2 + θ4y(k − 2)2

The model in steady-state yields:

ȳ = (θ1 + θ2)ȳ + (θ3 + θ4)ȳ2.

Because the model does not have any constant terms ȳ = 0 is a fixed
point. The other one can be found solving

y∗ = (θ1 + θ2)y∗ + (θ3 + θ4)y∗2

y∗ = [y∗ y∗ y∗2 y∗2]


θ1
θ2
θ3
θ4
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
The methodology

A typical 2D model has the general form:

y1(k) = F `
1 [y1(k−1), y2(k−1)]+e1(k)

y2(k) = F `
2 [y1(k−1), y2(k−1)]+e2(k)

The fixed points are given by (ȳ1, ȳ2) that are the solutions to the set of
equations:

ȳ1 = F `
1 [ȳ1, ȳ2]

ȳ2 = F `
2 [ȳ1, ȳ2].

The stability can be established using (at such fixed points):

DF (y) =


∂F `

1

∂y1(k − 1)

∂F `
1

∂y2(k − 1)

∂F `
2

∂y1(k − 1)

∂F `
2

∂y2(k − 1)

 .
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
The methodology

M an unconstrained model with fixed points at ȳ = 0 and ȳ∗
1.

Mc a constrained model with same structure, hence with ȳ = 0, and
estimated from the same data but constrained to have a new fixed point
at ȳ∗ = [ȳ1, ȳ2]T:

c =

[
ȳ1
ȳ2

]
, S =

[
F `
1 [ȳ1, ȳ2]

F `
2 [ȳ1, ȳ2]

]
.

Conjecture: ȳ∗ of Mc will be of the same type as that of ȳ∗
1 of M for

sufficiently small |ȳ∗
1 − ȳ∗|.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
The methodology

(a) (b)

Figure: Scenarios for (a) unconstrained and (b) constrained models.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
An example: the data
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Training Data Dynamic Flow Repellor Attractor Saddle

Figure: (Red) teacher-produced demonstrations; (blue) the vector field of a
black-box model.
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
An example: a grey-box model
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Training Data Dynamic Flow Repellor Attractor Saddle

(a) Model obtained with LS estimator
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Training Data Dynamic Flow Repellor Attractor Saddle

(b) After getTargetAttractor function.
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α

Training Data Dynamic Flow Repellor Attractor Saddle

(c) After getRM Model (1 and 2) functions
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α

Training Data Dynamic Flow Repellor Attractor Saddle

(d) After optimizeAlphaDistance function.
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α

Training Data Dynamic Flow Repellor Attractor Saddle

(e) After optimizeAccuracy function.
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Training Data Dynamic Flow Target Reproduction

(f) Execution of the RM model.

Fig. 4: Execution the NAR-RM procedure. The figures show the phase portrait of the identified models in blue, the fixed points in yellow (saddle),
green (attractor) and red (repellor), and the basin of attraction in green. Demonstrated reaching motions are shown as red trajectories and executed
motions are in black. All the axis are shown in millimeters.

Table 2: Number of models (out of the 41 RM models) with improved
performance after applying the NAR-RM procedure.

Total ` = 3 ` = 4 ` = 5
RM models 41 18 12 11
Improved SEA 30 14 7 9
improved ↵-distance 39 17 12 10
Improved both 28 13 7 8

observed in relation to `. As can be seen, ` = 3 pre-
sented the best ↵-distance in 18 patterns, against ` = 4
with 8 and ` = 5 with 4. Then, using the average values
of SEA and ↵-distance, we concluded that ` = 5 is the
best option for the LASA Handwriting Dataset library.

Figure 5 presents the phase portraits of 30 models
with the best SEA values obtained using the NAR-RM.
On the left hand side of Fig. 5 the basins of attraction
are presented and on the right hand side are the tra-
jectories obtained when the initial points are set to be
the initial points of the demonstrations. Those results
are comparable (and better in several cases) to the best
results published in the literature using the same data
base [4, 6, 7, 8, 9]. A numerical comparison with some

Table 3: Comparison among the NAR-RM models obtained with ` =
3, ` = 4 e ` = 5.

` = 3 ` = 4 ` = 5
Best SEA models 1 7 22
Best ↵-distance models 18 8 4
Average SEA models 195.14 120.52 101.57
Average ↵-distance models 10.24 7.01 7.27

of these methods is performed in the next section.

6.2. Comparison with previous work

We compared the performance of NAR-RM with
state-of-the-art methods using the benchmark2 for
learned reaching motion generation in robotics [31].

The benchmark considers four scenarios, which in-
clude typical perturbations that occur in robot motion:
(i) generalization, which is based on the initialization of
the model in di↵erent starting points; (ii) discrete push,

2The benchmark is available at: https://www.amarsi-
project.eu/benchmark-framework

10
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
An example: a grey-box model

y1(k) = +0.983506 y1(k − 1) + 0.096590 y2(k − 1)
−0.000078 y1(k − 1)3 + 0.005253 y2(k − 1)2

−0.000538 y2(k − 1)3 − 0.016513 y1(k − 1) y2(k − 1)
−0.000300 y1(k − 1)2 y2(k − 1)− 0.004126 y1(k − 1)2

y2(k) = +0.779775 y2(k − 1)− 0.000042 y1(k − 1)3

−0.015285 y1(k − 1) y2(k − 1)− 0.002493 y2(k − 1)2

−0.000216 y1(k − 1)2 y2(k − 1)− 0.004130 y1(k − 1)
−0.000102 y2(k − 1)3 − 0.001130 y1(k − 1)2

+0.000001 y1(k − 1) y2(k − 1)2 .
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Learning reaching motions by demonstrations

Learning reaching motions by demonstrations
The data

Figure: The benchmark is available at:
https://www.amarsi-project.eu/benchmark-framework.
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Conclusions

Conclusions
Other types of auxiliary information

In some applications the use of auxiliary information could be key.

Location and symmetry of fixed points (static curve)

Symmetry of the flow

Bifurcations (Hopf, flip and transcritical)

Hysteresis (multistability)

Polynomials, MLP and RBF networks

Constrained and multi-objective optimization
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Conclusions

Written Material

A Bird’s Eye View of Nonlinear System Identification

ResearchGate: https://www.researchgate.net/

https://arxiv.org/abs/1907.06803

Learning robot reaching motions by demonstration using nonlinear
autoregressive models

Santos, R. F., Pereira, G. A. S., Aguirre, L. A. Robotics and Autonomous
Systems, 107:182–195, 2018. DOI: 10.1016/j.robot.2018.06.006.

The videos are on YouTube

https: //goo.gl/AqMLAH.
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Conclusions
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