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Abstract

A fairly realistic three-species food chain model based on the Leslie-Gower scheme is investigated by using tools borrowed from the
nonlinear dynamical systems theory. It is observed that two co-existing attractors may be generated by this ecological model. A type-I
intermittency is characterized and a homoclinic orbit is found. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In general, studies of ecological models are devoted to the analysis of the existence and stability of
equilibria or persistence of food chains. However, the most interesting properties of a dynamical system are
the type of transients and the nature of the dynamical behaviors. Such an approach is particularly im-
portant when the asymptotic behavior of the system is chaotic.

Recent studies have shown that chaotic dynamics may play an important role in continuous time models
for ecological systems. For instance, there is some evidences that the real time evolution of species involved
in two or three food chains could be characterized by chaotic attractors as observed in many natural food
chains [1-7]. Most of these studies are devoted to models of simple food webs with one or two species, or
with three species based on Lotka—Volterra or Holling type schemes. On the contrary, this paper is focussed
on a fairly realistic three-species food chain ecological model, using Lotka and Leslie-Gower schemes as
studied in [7]. This model describes a prey population x which serves as the only food for a predator y. This
specialist predator y is, in turn, the prey of a generalist predator Z which is assumed to reproduce mostly
sexually.

A study of the bifurcation diagram is done when the self-growth rate for the prey ¥ is varied. The
evolution of the periodic orbit spectrum is investigated and a topological characterization of the chaotic
attractor is provided for the ecological model aforementioned. Indeed, in the last decade, several studies
have discussed the structure of chaotic attractors in terms of templates to describe how trajectories in the
phase space associated with the system are studied. The main idea behind such studies is that an attractor
can be described by its population of periodic orbits, their related symbolic dynamics and their linking
numbers [8—10]. Such an analysis can be applied for three-dimensional systems like the three-species food
chain model studied here.

This paper is organized as follows. In Section 2, the model is briefly described. In Section 3, the de-
pendence of the asymptotic behavior generated by the aforementioned model on the growth rate of prey x is
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investigated by using first-return maps and symbolic dynamics. An intermittent behavior is described and
a homoclinic orbit is investigated. It is shown that, for some bifurcation parameter values, co-existing
attractors can be observed. Finally, some remarks are confined in Section 4.

2. The three-species food chain model

A quite realistic model involving a three-species food chain is considered. A prey species X serves as the
only food for the predator y which is itself predated by another predator z. A typical situation of such a
scheme would involve rodents, snakes and peacocks [11]. Interaction between the specialist predator y and
its prey x may be modeled by the Volterra scheme, i.e., predator population dies out exponentially in the
absence of its prey. Nevertheless, for a more realistic model, the interaction between this predator y and the
generalist predator Z is rather modeled by the Leslie-Gower scheme where the loss in a predator population
is proportional to the reciprocal of per capita availability of its most favorite food. A set of ordinary
differential equations governing the above model is then given by [12]:
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where a; is the rate of the self-growth for prey X; a, measures the rate at which y will die out when no x
remain; w,’s are the maximum value which per capita rate can attain; dy and d; signify the extent to which
environment provides protection to the prey X; b; measures the strength of competition among individuals
of the species X; d, is the value of y at which per capita removal rate of y becomes w,/2; d; represents the
residual loss in Z population due to severe scarcity of its favorite food y; ¢y describes the growth rate of
the generalist predator Z by sexual reproduction, the number of males and females being assumed to be
equal.

The number of bifurcation parameters of this model may be reduced from 10 to 8 by using a scaling
transformation reading as [7]
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where the bifurcation parameters are defined as:
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In this study, the bifurcation parameters are set in such a manner so as they correspond to a realistic scheme
[12,13]. They read as:

a; = 10, dl = 100, Wy = 10, w3 = 10,
by =0.06, d, =10.0, w; =2.0, ¢o=0.03, (5)
dy =10.0, d; =200, m,=0.405.
The parameter values are chosen on the basis of previous studies [12] and correspond to quantitative
measures of attributes of the rodent-snake—peacock food chain. The a;-bifurcation parameter will be

varied during the present analysis. The system (3) has six fixed points. One of them, Fj, is located at the
origin of the phase space R*(x,y,z). The others are:
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These six fixed points are located on the xy-plane projection for a; = 1.93 with a chaotic trajectory
(Fig. 1). Fixed points Fy and F; always exist. It may be shown that F> never exists in the positive octant [7].
The existence of the fixed points F,. have been studied by investigating their local and global stability [7].

Since, for the parameters given in (5), it is located in the positive octant, the fixed point F; will be designated
as the ‘inner fixed point’.
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Fig. 1. Plane projection of the chaotic attractor observed for a; = 1.93. Three fixed points are also reported. F; is located very far from
the attractor and not in the positive octant. The fixed points Fj. are imaginary. None of the latter play any role in the dynamics.
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3. Dynamical analysis
3.1. Bifurcation diagram and intermittent behavior

The asymptotic behavior settles down onto a chaotic attractor for a; = 1.93 whose plane projection is
displayed in Fig. 1. A dynamical analysis of such a system starts by defining a Poincaré section as
follows:

P = {(ynz0) € R |x, = 0.80,%, < 0}. (7)

A bifurcation diagram is then computed. The a,-bifurcation parameter is varied on the range [1.6; 3.6]
(Fig. 2). A period-doubling cascade is observed. After the accumulation point, the behavior settles down
onto a chaotic attractor which is structured on a skeleton of periodic orbits [14]. When the a;-bifurcation
parameter is increased, this skeleton is developed, i.e., new periodic orbits are created. Typically, two
different bifurcations are involved. First, period-doubling bifurcations are easily identified in the main
period-doubling cascade but also within each periodic window. Second, saddle-node bifurcations, cre-
ating one stable limit cycle and one unstable periodic orbit, both having the same period, may be
identified at the beginning of each periodic window. One of them will be extensively studied in this
section.

As predicted by the kneading theory [15], chaotic attractors observed just beyond the accumulation
point of the period-doubling cascade are characterized by a unimodal first-return map, i.e., a map con-
stituted by two monotonic branches separated by a critical point C; located at the differentiable maximum
of the map (Fig. 3(a)). The first-return map remains unimodal while a; is less than 1.86560. Beyond this
value, a third branch appears and the dynamics becomes bimodal (Fig. 3(b)). It is found that the dynamics
remains bimodal for a; € [1.86560;1.97740]. A fourth monotonic branch then occurs after a tangent bi-
furcation associated with a saddle-node bifurcation creating two period-1 orbits (Fig. 3(c)) as observed on
the Rossler system [10]. Since the period p of the orbits created is small (p = 1), a periodic window is easily
observed (Fig. 2).

As usual, an intermittent behavior is observed before the periodic window. It results from a tangent
bifurcation associated with the saddle-node bifurcation. In order to avoid numerical difficulties in
computing the Poincaré section, the first-return map (Fig. 3(c)) is computed in the Poincaré section,
defined as

P.={(X,,Z,) € R’|Y, =0,Z, > 0},
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Fig. 2. The bifurcation diagram versus the a,-control parameter of the ecological model for ¢; = 0.03.
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Fig. 3. First-return maps to the Poincaré section for different values of the bifurcation parameter a;. A unimodal map with a dif-
ferentiable maximum is found after the accumulation point as predicted by the kneading theory. For large a,-values, a bimodal map is
observed up to a tangent bifurcation for a; = 1.977403. (a) a; = 1.8660; (b) a; = 1.93; (c) a; = 1.977403.

where X =z, Y =z and Z =2, i.e., in the differential space induced by the z-time series. Such an in-
duced space allows to avoid spurious intersections between the chaotic trajectory and the plane used to
compute the Poincaré section. The first-return map is found to be tangent to the bissecting line for
a; = 1.97740. Beyond, the asymptotic behavior settles down onto the period-1 limit cycle which is
encoded by the orbital sequence (3), i.e., whose intersection with the Poincaré section is located on the
fourth monotonic branch. Before the bifurcation, a thin canal between the first-return map and the
bisecting line can be found. When the trajectory visits it, it stays for a long time very close to the limit
cycle which will be created when the first-return map will reach the bissecting line. Thus, it seems that
the trajectory travels on a periodic orbit during a significant time interval. When the trajectory escapes
from this thin canal, it evolves on the chaotic attractor and a chaotic burst is observed (Fig. 4).
Consequently, the intermittent behavior is characterized by the so-called laminar phases, during
which the behavior is almost periodic for a finite time, interrupted by chaotic bursts before being
reinjected in the thin canal. Such a scenario has been theoretically predicted by Pomeau and Manneville
[16].

At least three types of intermittency exist, each of them being associated with a specific reinjection
mechanism. They are distinguished by the distribution P(/) of the laminar length /. Such a distribution
computed for the intermittency just before the period-1 window is displayed in Fig. 5. It exhibits two
characteristic lengths, one around 1000 s which is associated with the short phases while the other is around
4000 s and is associated with the long laminar phases. The diagram of the distribution of the laminar
lengths is characteristic of a type-I intermittency [17] as expected when a saddle-node bifurcation is in-
volved.
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Fig. 4. Intermittent behavior is observed for a; = 1.97740. Laminar phases during which the behavior is almost periodic are inter-
rupted by chaotic bursts (co = 0.03).
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Fig. 5. Distribution of the laminar length / for a; = 1.97740 and ¢; = 0.03. The histogram is characteristic of a type-I intermittency.

3.2. Evolution of the orbit spectrum

The critical point C; identified on the first-return map allows to define a partition of the attractor. Thus,
each monotonic branch may be associated with a symbol to define a symbolic dynamics. For instance, when
a; € [1.85653;1.97740], the first-return map is constituted by three monotonic branches separated by two
critical points, C; and C, (Fig. 3(b)). Any chaotic trajectory is then represented by a string of coordinates
{».} in the Poincaré section which is encoded by a string of symbols {o,}. Each symbol ¢, is defined
according to the generating partition:

0 if Y < Cl,
o, =11 if C, <y, <G, )
2 if G, < Wn-
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Such a symbolic dynamics then allows each periodic orbit embedded within the chaotic attractor by an
orbital sequence [15,18] to be identified. In our case, the population of periodic orbits extracted from the
chaotic attractor is reported in Table 1 for two values of a;.

While the first-return map is unimodal with a differentiable maximum, the dynamics belongs to the
universal class identified by Feigenbaum [19] and, independently, by Coullet and Tresser [20]. The evolution
of the periodic orbit spectrum when the a;-bifurcation parameter is varied is then well predicted by the
unimodal forcing order [15,18]. Nevertheless, once a second critical point occurs, the dynamics is no longer
unimodal and there is no universal order to predict the evolution of the orbit spectrum when a bifurcation
parameter is varied [21]. Indeed, once two critical points are involved, two kinds of bifurcation may be
involved, e.g., supercritical bifurcations increasing the number of periodic orbits and subcritical bifurca-
tions decreasing the number of periodic orbits. When two critical points are identified, it often appears that
one is associated with the supercritical bifurcations and the other with the subcritical bifurcations [22]. This
is the case for the Rossler system. Such a concomitance has been called antimonotonicity by Dawson et al.
[23].

When the orbit spectra extracted for a; = 1.85653 and a; = 1.93 are compared, it is remarked that
there are some periodic orbits which are destroyed as exemplified by the four orbits encoded by
(10010), (10011), (20011) and (20010). As observed on the Rossler system [24,26], these orbits should be
destroyed by inverse saddle-node bifurcations as displayed in Fig. 6(a). In each case, a stable limit
cycle, (10011) or (20010), induces a period-doubling cascade. Such a destruction process results from

Table 1

Population of periodic orbits embedded within the attractor for two values of the a; bifurcation parameter (¢o = 0.03)
(a) a; = 1.8660 (b) a; =193
($) (8) ($) ($) ($) ($)
1 10010 1 201 21100 211
10 10011 10 20110 21101 210
1011 20011 1011 20111 211011 210211
101110 20010 10110 201110 211020 21021
101111 200101 101 20100 211021 21020
10111 200100 100 20200 2110 210201
10110 100101 20 21110 21010
101 200101 21 211100 21011
100 200100 21201 21120 2111
100101 200 21200 21121 211121

(10010) (10010)

W%CE """""" 2}\ (%Cf; """""" :S)”
¥, ; Y,
i ’ (20011)
. 7 o a
(a) Rossler system (b) Ecological model

Fig. 6. Mechanisms responsible for the destruction of the periodic orbits. The periodic orbits are created by two saddle-node bifur-
cations through the critical point C,. In the case of the Rossler system, the orbit (20011) is destroyed with the orbit (10011) and (20010)
with (10010). This feature comes from the fact that the destruction is governed by the critical point C,. Contrary to this, in the case of
the ecological model, the critical point C, has a very limited role and the destruction of the orbits is induced by the critical point C;.
Consequently, the orbit (10011) is destroyed with the orbit (10010), and (20011) with (20010). (a) Rossler system. (b) Ecological
model.
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the existence of a homoclinic orbit as observed on the Rossler system [10,24,25]. Once the homoclinic
orbit is created for a; = ay (see Section 3.3), a destruction is involved by an inverse saddle-node bi-
furcation. In the case of the Rossler system, the inverse bifurcations are induced through the second
critical point C,. Contrary to this, in the case of the realistic ecological model, the periodic orbits are
destroyed by inverse bifurcations involving the same pairs of orbits as involved in the creation process
(Fig. 6(b)). It means that the second critical point C, has a weak role in the evolution of the orbit
spectrum when a bifurcation parameter is varied and all the bifurcations (supercritical and subcritical)
are induced by the critical point C; (for a; < 1.97740). The fact that the critical point C| is responsible
for the creation as well as the desctruction induces that the third monotonic branch labelled 2’ is
quickly truncated as observed for a; = 2.10 (Fig. 7(a)). Such a feature is not observed on the Rossler
system.

For higher a;-values, i.e., a; > 3.02 (Fig. 7(c)), the first-return map is unimodal again, with a differen-
tiable maximum. Consequently, the unimodal forcing order can be used to predict the evolution of the
bifurcation diagram. In fact, when qa; is increased beyond 3.02, inverse bifurcations are observed. It means
that the periodic orbits embedded within the attractor become less numerous. The bifurcation diagram is
therefore ended by a cascade of inverse period-doubling bifurcations.

When q, €]2.10; 3.02], it is rather difficult to compute a safe Poincaré section, i.e., without any spu-
rious intersections between the trajectory and the Poincaré plane. These difficulties arise from the fact
that there is no plane projection where a hole may be found in the middle of the attractor. As a con-
sequence, spurious intersections cannot be avoided. For instance, for a; = 2.20 (Fig. 7(b)), a piece of a
monotonic branch is observed near the bissecting line and located at the right side of the first-return map.
Such a small branch is supicious. For these reasons, it may be difficult to describe the pruning process for
periodic orbits. Nevertheless, up to five monotonic branches could be possibly identified on this range of
a;-values.
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Fig. 7. First-return maps to the Poincaré section P, for three different high bifurcation parameter values. (a) a; = 2.10; (b) a; = 2.20;
© a; = 3.02.
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3.3. Multistability

When more than one critical points are identified, it may appear that two bifurcations involving low
periodic orbits induce simultaneously a periodic window. In such a case, two co-existing stable limit cycles
may be observed [22]. In the present case, the most observable periodic windows are the one associated with
the main period-doubling cascade and the one associated with the saddle-node bifurcation inducing the
stable period-1 limit cycle encoded by (3), i.e., corresponding to the intersection of the branch labelled by ‘3’
with the bissecting line. When ¢, = 0.03, two second periodic windows are observed for very different values
of a;. Nevertheless, when the growth rate of the generalist predator ¢ is slightly increased, the saddle-node
bifurcation appears for a;-values sufficiently small to allow a co-existence of the stable limit cycle (3) with
the main period-doubling cascade (Fig. 9). Indeed, the occurrence of the saddle-node bifurcation depends
on the ¢q-bifurcation parameter as displayed in Fig. 8. While a slight dependence on the ¢,-value is observed
for the period-doubling bifurcation inducing the period-8 limit cycle, increasing the growth rate of the
general predator provokes an earlier saddle-node bifurcation inducing a couple of periodic orbits encoded
by (2) and (3). Nevertheless, the bistability is observed for ¢, values a little bit larger than 0.036. For smaller
values, only a periodic window is observed, i.e., the asympotic behavior is the period-1 limit cycle (3) for
any initial conditions.

Thus, it has been observed that two attractors may co-exist, i.e., there are two attraction basins from
which the asymptotic behavior settles down onto two different attractors. Such multistability is observed
when the rate of the self-growth a; for prey x is varied on the interval [1.7804; 1.8915] (see Fig. 9). This
feature is particularly important when an epidemic arises. For instance, when only one single attractor is
observed, the sudden, widespread occurrence of an infectious disease in a community at a particular time
induces a fast decrease of the population but, once the epidemic is finished, the population grows again up
to the previous value and restarts to evolve with the same dynamics as the one observed before. Contrary to
this, when two attractors co-exist, the epidemic may induce a transition from one attraction basin to the
other and, consequently, the dynamical behavior after the disease may be different from the one observed
before. Thus, an epidemic may affect deeply the equilibrium between different species.

In the present case, the two attractors are observed from the initial conditions

Xo = 12, Xo = 02,
=12 and y,=0.2,
zZy = 12, zZy = 02,

respectively. For instance, for a; = 0.17924, a period-1 limit cycle coexists with a period-8 limit cycle
(Fig. 10).

2.10 T T T T T

e—= saddle-node bifurcation
—=-= period—doubling bifurcation

g

=3

S
T

growth rate of the prey x
3 2

1.70 L L L L L
0.027 0.029 0.031 0.033 0.035 0.037 0.039

growth-rate of the generalist predator c,

Fig. 8. When the growth-rate of the generalist predator ¢ is increased, the saddle-node bifurcation creating the stable limit cycle (3)
and the unstable one (2) occurs for smaller values of the self-growth rate of the prey x. The period-doubling bifurcation inducing the
period-8 limit cycle encoded by (10111010) is slightly dependent on ¢y.
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Fig. 9. Bifurcations diagram of the three-species food chain model for ¢y = 0.038. Two different attractors are observed when
a; € [1.7804; 1.8915]. Two co-existing period-doubling cascades are then observed. The chaotic attractor issued from the main one is
destroyed by a boundary crisis with the unstable periodic orbit (2) created by the saddle-node bifurcation observed for a; = 1.7804.
The stable limit cycle (3) is destabilized through a period-doubling bifurcation followed by a period-doubling cascade for a; = 2.002.
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Fig. 10. The period-1 limit cycle (3) coexists with the period-8 limit (10111010) cycle for a; = 1.7924. The small loop presented by the
cycle (3) results from a projection effect and the limit cycle has rather a period equal to 1 as observed on the bifurcation diagram. For
instance, another plane projection induced by the z-time series clearly confirms the periodicity of the limit cycle (3). This plane pro-
jection also exhibits that the stable limit cycle has a period equal to 8 rather than 4 as suggested by the xy-plane projection. They are
involved in two different period-doubling cascades which are concomitant (¢, = 0.038). (a) xy-plane projection. (b) XY-plane pro-
jection.

Let us remark that two stable limit cycles may co-exist for ¢; = 0.03 when the bifurcation parameter a; is
set to 2.5. In such a case, a period-1 limit cycle coexists with a period-2 limit cycle (Fig. 11). Such a bi-
stability explains the shift observed within the periodic window of the bifurcation diagram located at
a; = 2.5 (Fig. 2).

3.4. Homoclinic orbit

When the growth-rate of the generalist predator Z is increased, it is observed that the saddle-node bi-
furcation is created for smaller values of the self-growth rate of the prey . Contrary to this, by decreasing
the c¢p-bifurcation parameter, this saddle-node bifurcation occurs for larger values of a;. In the same
manner, the third monotonic branch of the first-return map appears later and, consequently, the unimodal
map is more developed, i.e., orbital sequences of periodic orbits embedded within the attractor are
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Fig. 11. Two co-existing limit cycles for ¢; = 0.03.

constituted by substring ‘0" with larger n. On the other hand, the increasing branch starts closer to the
bisecting line.

Such a feature is particularly important since very often, as observed on the Rossler system [10], when
the increasing branch reaches the bisecting line, a homoclinic orbit may be observed. A homoclinic orbit
visits the small neighborhood of an inner fixed point, spaces out by its unstable manifold and is reinjected in
the neighborhood of the same fixed point by its stable manifold. An existence criterion has been proposed
by Sil’'nikov [27]. A homoclinic orbit has been observed for ¢y = 0.029101 and a; = 1.917420 (Fig. 12(a)). It
is checked that the increasing branch of the unimodal first-return map then reaches the bissecting line (Fig.
12(b)) as expected. In the present case, the trajectory visits a neighborhood where the derivatives become
very small but, surprisingly, no fixed point has been identified in this neighborhood. For instance, the
trajectory visits the point P which has the coordinates

x = 0.795345,
y = 0.160453, 9)
z =0.073065,
0.030
00125 <
0.0075 0.045
0 1
0.0025
0.060
s Z,.
>~ 00025
0.075
-0.0075
2
00125 0.0% c
-0.0175 L - L i
0.03 0.05 0.08 0.10 0.12 0.15 0.090 0.075 0.060 0.045 0.030
X(1)=z(1) z
(a) XY-plane projection (b) First-return map

Fig. 12. An approximation of the homoclinic orbit observed on the three-species food chain model for a; = 1.917420 and
co = 0.029101. The trajectory visits the neighborhood of the inner fixed point F;,. The first-return map exhibits an increasing branch
which reaches the bisecting line. (a) XY-plane projection. (b) First-return map.
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Fig. 13. Time evolution of the different normalized species in a homoclinic situation (a; = 1.917420 and ¢, = 0.029101).

and the derivatives

%= —0.000011,
7 = 0.002946, (10)
£ = ~0.003570.

The existence of homoclinic orbits implies the destruction of periodic orbits when the self-growth rate
for prey x is increased according to the scenario described by Gaspad et al. [24,26]. Moreover, when such
an orbit is observed, the time evolution of the species is rather characteristic (Fig. 13). The food chain
remains near the equilibrium during a significant interval and large eruption of the population can be
observed. The length of the ‘static’ phase depends on the reinjection of the trajectory in the neighborhood
of the point p. Although determinist, such a time interval is too sensitive to initial conditions to be
efficiently predicted. From a practical point of view, abrupt eruptions of the species appear apparently in
a random manner.

4. Conclusion

A fairly realistic three-species food chain model based on the Leslie-Gower scheme has been investi-
gated. It has been shown that the time evolution of different species can be chaotic. A type-I intermittency
has also been observed. It suggests that, without any external factor such as epidemic or weather condi-
tions, populations of preys and predators may evolve regularly and then, abruptly start to evolve in a
chaotic manner. After a given time duration, the population evolves regularly again.

When the growth-rate of the generalist predator is large enough, a bistability can be observed, i.e., two
different attractors with their respective attraction basins may co-exist. In such a case, an epidemic or
significant climate change may provoke a transition from one dynamical behavior to another. For in-
stance, the time evolution of the populations can be regular and become irregular after an epidemic, or
vice versa.

Another particular behavior is when the trajectory of the time evolution of the system describes a ho-
moclinic orbit. In such a case, the populations are almost constant during a finite time interval and,
suddenly, a large oscillation is observed. Since the time duration of such a ‘nearly static’ phase is highly
dependent on initial conditions, the large oscillations seem to appear randomly.
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