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Abstract

A fairly realistic three-species food-chain model based on Lotka—Volterra and Leslie-Gower schemes is investigated
assuming that just a single scalar time series is available. The paper uses tools borrowed from the theory of nonlinear
dynamical systems. The quality of the different phase portraits reconstructed is tested. Such a situation would arise in
practice whenever only a single species is counted. It is found that the dynamical analysis can be safely performed when
a single species involved in the food chain is counted if many thousands of observations are available. If not, a global
model can be obtained from the available data and subsequently used to produce all the data required for a detailed
analysis. In this case, however, the choice of which species to consider in order to obtain a model is crucially
important. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

When an ecological model involving few species is investigated, complete knowledge of the states of the system may
require the measurement of all the interacting species. Unfortunately, when a real ecological system is investigated, it is
very often not possible or it becomes too expensive to count all the species involved. However, one of the most in-
teresting concepts from nonlinear dynamical system theory is that the time evolution of a single species may be used to
reconstruct a phase portrait equivalent to the original one. For instance, if the ecological model under study involves N
species designated by a state vector x(¢), the original phase portrait is embedded in a space spanned by all the com-
ponents of x(#). The time evolution {x(¢)} is the solution of the dynamical system x(¢) = @(x(¢)), where & designates
the vector field. If we suppose that we can only measure one component, i.e. one scalar function X = G(x(¢)), it may be
possible to reconstruct a phase portrait which is expected to be equivalent to the original one by using delay or de-
rivative coordinates [1]. In such a situation, is the knowledge of the time evolution of one species enough to predict or to
reproduce the time evolution of the whole food chain with a global model? This is the natural question that this paper
will address for a fairly realistic three-species food-chain model which is based on Lotka and Leslie-Gower schemes as
studied in [2-4]. It describes a prey population ¥ which serves as the only food for a predator y. This specialist predator y
is, in turn, the prey of a generalist predator Z which is assumed to reproduce sexually. In the last decade, a number of
studies have been carried out to analyze ecosystem models based on Lotka—Volterra or Holling type-I schemes, see
[5-9]. There is now a considerable literature on discrete and continuous models of this kind. Particularly, such papers
often address the problem of existence and stability of equilibria or persistence of food chains. However, other in-
teresting properties are the natures of the dynamical regimes exhibited by a dynamical system. Such an approach is
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particularly important when the asymptotic behavior of the system is chaotic. In particular, recent studies have shown
that chaotic dynamics may play an important role in continuous-time models for ecological systems and there is some
evidence that the real time evolution of species involved in two or three food chains could be characterized by chaotic
attractors as observed in many natural food chains, see [3-8] for example.

To determine whether the dynamics underlying a real ecological system is chaotic, it is rather important to possess
measures of the time evolutions of the interacting species. Unfortunately, practical measurements pose concrete diffi-
culties. First, it is impossible or too expensive to measure the whole state vector, i.e. to count simultaneously all the
interacting species. Second, most algorithms (e.g. Lyapunov exponent and correlation dimension) assume lots of clean
and stationary data. One way of avoiding such problems is to follow a two-step procedure: first obtain a global model
from a short possibly noisy and weakly non-stationary time series. Then use the model to generate all the data required
for analysis. This has been illustrated for a very large number of simulated cases in [10]. Nevertheless, it is not always
possible to obtain a global model from a single time variable and such a possibility depends crucially on the time series
available [11]. It is therefore important to determine which species should be counted to optimize the chance of ob-
taining a global model. This paper aims to address this last question.

The paper is organized as follows. Section 2 briefly introduces the realistic ecological model studied. Section 3 in-
vestigates the phase portrait induced by each species involved in the food chain, i.e. whether the food-chain dynamics
can be safely investigated from a single time series. Section 4 is devoted to quantifying the observability of the system
and to obtaining global models from the most observable variables. The main conclusions of the paper are summarized
in Section 5.

2. Mathematical formulation of the model and equilibria

A quite realistic model involving a three-species food chain is considered. A typical situation of such a scheme would
involve rodents, snakes and peacocks [12]. Interaction between the specialist predator y and its prey X may be modeled
by a Volterra scheme, i.e. predator population dies out exponentially in the absence of its prey. Nevertheless, for a more
realistic model, the interaction between this predator y and the generalist predator Z is rather modeled by the Leslie—
Gower scheme, where the loss in a predator population is proportional to the reciprocal of per capita availability of its
most favorite food, as will be detailed in what follows.

2.1. The mathematical model

A mathematical model governing the system can be written as a set of three continuous autonomous first-order
differential equations, [2] namely
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where the dot indicates derivatives with respect to time (or time derivatives), X is the density of prey at the bottom of the

food chain, j is the density of the specialist predator, and Z is the density of the generalist predator.

The meanings of the parameters are given below:

a, is the rate of the self-growth for prey %;

a, measures the rate at which y will die out when there is no prey left;

w;’s are the maximum values attainable by each per capita rate;

dy and d; quantify the extent to which the environment provides protection to the prey x;

b, measures the strength of competition among prey individuals X;

d, is the value of y at which per capita removal rate of y becomes ,/2;

e d; represents the residual loss in Z population due to severe scarcity of its favorite food y;

e ¢ describes the growth rate of the generalist predator Z by sexual reproduction, the number of males and females
being assumed to be equal.

These parameters assume only positive values. The total number of parameters of this model may be reduced from 12 to

8 by using a scaling transformation that reads as [4]
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In [3] and [4] it was shown that this system displays an impressive breadth of complex phenomena, including chaos.
It has been found that this continuous-time ecosystem model can produce a type-I intermittency, homoclinic orbits or
multistability. The existence and the stability of the fixed points have been studied. Setting x = y =z = 0 in Eq. 3, the
equilibria are obtained on solving the resulting equations [4]. Six fixed points are identified. One of them, Fy, is located
at the origin of the phase space R*(x,y,z). The others are

F(1,0,0), 5(0,;%-;;,1;(;,—6—;%)), a(cb_db,(l —xg)(a+X3)70)

and

X4y =52 E \/—(”41)_ —§+h,
h

Fop = | Vo =5 — 1, (5)
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Fixed points Fy and F; always exist. On the other hand, it can be shown that F> never exists in the positive octant where
the realistic model is defined. The existence of the fixed points Fj. have been studied by investigating their local and
global stability [4].
In this study, the bifurcation parameters are chosen to correspond to a realistic scheme [2,13]. They read as
a =10, b =006, dy=100, d, =100, d =100, d;=20.0,
Wy = 10, w) = 207 Wy = 0405, w3 = 107 Ccy = 0.03.

P )

24+ =

(6)

The parameter values are chosen on the basis of previous studies [2] and correspond to quantitative measures of at-
tributes of the rodent-snake—peacock food chain. Fig. 1 shows plane projections of the chaotic attractor obtained for
a; = 1.93.
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Fig. 1. Projections of the chaotic attractor onto the three different planes of the phase space R*(x,y,z) for a; = 1.93.
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3. Analysis of the food chain through a single observed (or counted) species: embedology
3.1. Generalities

When one would like to investigate a multi-species food chain, one faces the important question: Do I have to count
all the species within a period of time (that is to say: do I have to actually know the time evolution of all the species that
compose my studied food chain)? This situation with wide ramifications is connected with the important practical
problem of analyzing a nonlinear dynamical system from a single time series. When real dynamics are investigated from
a single scalar time series, the first step of any dynamical analysis is to reconstruct a phase portrait which is expected to
be equivalent to the original, but not measured, phase portrait. In our case, the “measured” time series will be con-
stituted by the time evolution of only one of the three species involved in the food-chain system (3), i.e. either x, y or z.
The reconstructed phase portrait is thus embedded in a space spanned by delay coordinates

X@O),Xt+1),X(0t+210),.... X0+ (de — D7)}

or the derivative coordinates

{X(r),X(z),X(t), .. ,%}7

which have been shown to be equivalent [14].

Takens [15] has proposed and analyzed these different techniques for constructing a vector of whatever dimension is
desired from a time series of a single scalar in the ideal case, i.e. no noise and infinite data. The most interesting result
from nonlinear dynamical system theory is that the time evolution of the system in the phase space does not necessarily
require knowledge of all the dynamical variables involved in the complete description of a state of the system because,
according to the information redundancy principle, a time series corresponding to the time evolution of a single species
may be sufficient to provide the relevant information to investigate a many-species food chain.

Starting from a single scalar time series, it is possible to reconstruct a phase portrait which is expected to be
equivalent to the original phase portrait. The best equivalence which may be expected is when the map which trans-
forms the original phase portrait into the reconstructed one is an embedding defined as follows.

Definition 1. A one-to-one continuous function from a compact set to R’ is called an embedding of the set (or a to-
pological embedding). The number d is called the embedding dimension of the set.

A remarkable theorem by Takens [15] states:

Theorem 1. A finite-dimensional attractor can always be embedded in some R?; the sufficient embedding dimension d can
be only a unit greater than twice the dimension of the attractor.

When using a single time series, one may be sure of having obtained the best quality of reconstruction when a dif-
feormorphism between the reconstructed state portrait and the original one is found. Such a quality may be obtained
when the embedding dimension d is sufficiently large. According to Takens’ theorem, it is sufficient to take d greater than
or equal to 2Dy + 1 where Dy ideally refers to the Hausdorff dimension which could be conveniently approximated by
the correlation dimension estimated by Grassberger and Procaccia’s algorithm [16]. Nevertheless, a dimension less than d
may be sufficient to obtain an equivalent phase portrait. Such a dimension may be estimated by using the false nearest
neighbors [17], for which an improved algorithm has been recently proposed by Cao [18]. The latter is used here.

Theoretically, i.e. with an infinite amount of data without any noise, all the dynamical variables are equivalent and
may be used. Unfortunately, when one faces data from the real world, necessarily corrupted by noise and discretized in
time, such equivalence is not always observed and we may find that some variables are better than others [11]. Such a
difficulty may become more severe when only poor-quality data are available, as often happens in the study of ecological
systems [19], where an uncontrolled nonlinear superimposition of fluctuations may be present [20]. It is therefore rather
important to state whether the three species may be equivalently used to investigate the dynamics of the whole food chain.

3.2. Numerical experiments

As previously explained, the interesting feature of derivative (or delay) coordinates is that they can span a recon-
structed phase portrait which is expected to be equivalent to the original phase portrait. In order to do so, the time series
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itself is plotted versus its time derivatives. The phase portraits embedded in the space spanned by the derivative co-
ordinates (X, Y, Z) are called the differential embedding. For the three variables of the three-species food-chain system
(3), the dimension of the differential embedding is obviously equal to 3 (Fig. 2). The reconstructed state space is

therefore spanned by the three variables reading as

X =x,y or z,
Y =X, (7)
Z=X.

Plane projections of the three induced phase portraits are displayed in Fig. 3.

A first-return map is then computed for each reconstructed phase portrait. The Poincaré sections P; are defined as

follows:

2. ={(X,,Z,) € B’ X, > 0.80, ¥, =0, Z, <0} (8)
when X = x,

P, ={(X,,Z,) € R*| X, <021, ¥, =0, Z, >0} )
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Fig. 2. The three dynamical variables (x, y or z) can be used for investigating the dynamical behavior of the three-species food-chain
model. For each variable, the embedding dimension is equal to 3. In the method proposed by Cao, the ordinates saturates when the
embedding dimension is large enough. Index E,(d) measures the relative change in the average distance between two neighboring
points in R? and their respective images in R?*! when the embedding dimension is increased from d to d + 1. The embedding dimension
are computed by using a phase space reconstructed with the delay coordinates with a time delay t equal to 2067 = 0.3 s. (a) x-variable;
(b) y-variable; (c) z-variable.
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Fig. 3. XY-plane projections of the different differential embeddings induced by the three dynamical variables of the system (3): they
give a fairly faithful visual representation of the original attractor shown in Fig. 1. (a) x-variable; (b) y-variable; (c) z-variable.

when X = y and
2. ={(X,,Z,) € R*| ¥, =0, Z, >0} (10)

when X = z. The three first-return maps are found to be constituted by three monotonic branches (Figs. 4(a)—(c)) as
observed for the original attractor (Fig. 4(d)). The population of periodic orbits is then extracted and is the same as the
one from the original attractor reported in Table 1.

We showed that the evolution of the orbit spectrum is rather similar to those of the Rossler system, at least until no
more than three monotonic branches are identified on the first-return map. It is then interesting to check whether the
relative organizations of the periodic orbits in the phase space are similar too. Since the model considered here is
tridimensional, its periodic orbits, viewed as knots, can be characterized by linking numbers [21]. Using the concept of
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Fig. 4. The first-return map to the Poincaré section 2 is found to be constituted by three monotonic branches separated by two critical
points C; and C;. (a) x-induced portrait; (b) y-induced portrait; (c) z-induced portrait; (d) original phase portrait.
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Table 1

Population of periodic orbits embedded within the attractor for the a; bifurcation parameter equal to 1.93 (¢, = 0.03)

1 201 21100 211

10 20110 21101 210

1011 20111 211011 210211

10110 201110 211020 21021

101 20100 211021 21020

100 20200 2110 210201

100 101 20 21110 21010

200101 21 211100 21011

200100 21201 21120 2111

200 21200 21121 211121

knot-holder introduced by Birman and Williams [22], a template synthesizing the topological properties of the attractor
may then be built [21]. A template is a branched manifold. To each monotonic branch of the first-return map corre-
sponds a strip on the template. Thus, the template of the chaotic attractor generated by the three-species model (3) will
be constituted by three strips for ¢; = 1.93. An important property of the strips is their local torsion, i.e. the number of
half-turns of the tangent space counted when a trajectory makes one revolution on the chaotic attractor through a given
strip. From the first-return map, the parity of the local torsion may be defined. An increasing branch is associated with
an even number of half-turns; it is an order-preserving branch. On the contrary, a decreasing branch is an order-
reversing branch and is associated with a strip whose local torsion is odd. In our case, the template will be constituted
by two even and one odd strips according to the first-return map.

The chaotic attractor generated by the three-species food-chain model is characterized by the template displayed in
Fig. 5. Such a template may be defined by a linking matrix A/;; whose diagonal elements M;; describe the number of half-
turns of the ith strip and off-diagonal elements M;; provide the number of crossings between the ith and the jth branches

[23] oriented according to the following convention:

A A

M;=+1 -

In the case of the three-species system, the linking matrix of the three-strip attractor reads as

0 0 O
M;j=1|0 +1 +1]. (11)
0 +1 +2

Such a template allows one to predict all the linking numbers between couples of periodic orbits. Indeed, all of them
have been found in agreement with those counted on plane projections of the corresponding periodic orbits extracted

Fig. 5. Template of the three-strip chaotic attractor generated by the three-species model.
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from the attractor. In order to do so, each oriented crossing y(p) is identified on the plane projection and oriented with
the aid of the third direction of the phase space according to the usual convention.

Linking numbers are also computed for each reconstructed attractor. All of them are well predicted by the template
characterizing the original attractor (Fig. 5). Details of topological characterization by templates can be found in
[21,24,25]. The three reconstructed phase portraits are thus topologically equivalent to the original one. The dynamics is
therefore preserved under the reconstruction process. One may therefore investigate this three-species food chain by
recording the time evolution of any single species. Since the topological properties have been checked for the three-strip
attractor, the equivalence is also checked for all attractors whose populations of periodic orbits are a subset of the one
extracted for this attractor. Indeed, linking numbers are unchanged while the corresponding periodic orbits are not
involved in a bifurcation.

4. Observability indices

When a real food chain is investigated from counting a single species, one could attempt to obtain a global model
from this time series using global modeling techniques. Thus a set of ordinary differential equations or difference
equations obtained would be able to reproduce the time evolution of the counted species. Few algorithms have been
proposed in the literature. In this paper, two different modeling techniques are used, the so-called nonlinear
autoregressive moving average (NARMA) technique as introduced by Leontaritis and Billings [26] and the global
modeling technique providing a set of ordinary differential equations as developed by Gouesbet and Maquet [27].
However, since global modeling is much more sensitive to the choice of the observed variable, i.e. the species counted,
than topological analysis, discussed in the previous section, the observability of the dynamics of the food chain here
investigated from the species is first quantified using an observability index originally defined in [28] and applied in the
study of nonlinear dynamics in [11].

In order to quantify the observability, the indices introduced in [11] will be used. The concept of observability in
linear systems theory is standard [29]. Consider the system

X = Ax + Bu, (12)

s = Cx,
where x € R” is the state vector, s € R" is the measured vector, u € R” is the input vector and {4, B, C} are constant
matrices. In this paper, r =1 and s is the observable. In the case of nonlinear systems, 4 is replaced by the jacobian
matrix evaluated along the trajectory. In other words, given an orbit, the system jacobian matrix is estimated at each
point for which the observability indices (see below) are calculated. Subsequently, the average along the trajectory is
computed. Matrix C, on the other hand, is trivially obtained from the measurement function designated by 4. The
system (12) is said to be state observable at time # if the initial state x(0) can be uniquely determined from knowledge of
a finite time history of the input u(¢) and output s(¢), 0 < < ¢ [29]. It should be noted that the definition is still valid for
autonomous systems, that is, for u(t) =0 or B =0.

Definition 2. The system (12) is said to be state observable if the observability matrix

C
CA

0=| & (13)

CAVI*)'
is of full rank, that is if rank(Q) = m.

This definition is a “yes” or “no”” measurement of observability, i.e. the system is either observable or not. In
practice, however, a system may gradually become unobservable as a parameter is varied or, for nonlinear systems, it
seems reasonable to suppose that there might be regions in state space that are less observable than others. Hence it is
useful to define the observability index as [28]

5= Mmin(QQT) I

T (00T)] (14
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where ()T indicates the transpose, and Ay, and Ay.x are the minimum and maximum eigenvalues. Then 0 < d < 1, and
the lower bound is reached when the system is unobservable. It should be noticed that the index (14) is a type of
condition number of the observability matrix.

To compute the observability indices, the starting point is to obtain matrix 4 seen in Eq. (12). Because such an
equation is linear, the system should be linearized along a trajectory (X, 7, Z) in such a way that at each point we have a
constant matrix

on o Oh
ox Oy 0z

| %

A= ox Oy Oz (15)
ox Oy Oz S

X=X, y=y, z=Z

that describes the local dynamics.

The second step is to define the observable through the measurement function and choose C accordingly. For in-
stance, if we measure the observable s = x, then C = [1 0 0]. If we measure s = y + 0.5z, then C = [0 1 0.5], and so on.
In these cases, because we use only one observable, s is a scalar and » = 1 in (13). The formation of matrix Q (see (13))
follows directly and the computation of the observability index using (14) can be performed using standard software. In
this way, at each point on the trajectory we have a value for the observability indices. In this section we have always
shown the values of such indices averaged along the trajectory considered.

The average observability indices were computed for the three dynamical variables of the ecological model (3). It was
found that

o, = 0.0736, 6, = 0.0019, 5. =2.4299 x 107>, (16)

It seems that the dynamics underlying this three-species food chain is definitely less observable from the observations of
the generalist predator than from the prey or the specialist predator. The very low observability of the dynamics from
the z-variable is quite surprising because, from a visual inspection of the time series shown in Fig. 2, it is not obvious
that the variables may not be equivalent for observing the dynamics. From these observability indices, it appears that
counting the generalist predator, located at the end of the food chain, is not an adequate strategy for investigating the
dynamics of this food chain. It is much more efficient to count the prey or the specialist predator.

5. Global modeling from the different species

Consider a continuous-time dynamical system described by a set of ordinary differential equations
x=f (% p), (17)

where x(¢) € R" is the state vector that depends on a parameter ¢ called the time and f , the so-called vector field, is an n-
component smooth function generating a flow ¢,. Also, u € R” is the parameter vector with p components, assumed to
be constant in this work.

It is assumed that a single variable is measured, and it is desired to obtain a dynamical model, from that single time
series and with no prior knowledge, that will represent the original dynamics in some sense. In the remainder of this
section, two different model representations will be described. Such representations will be used on simulated and real
data to illustrate the main ideas of this work.

5.1. Discrete-time models

Here it is considered that the counted species is y(k) = h(x(kT;)), k = 0,1, ..., where x is the state vector and 7; is the
time interval between two observations (to count the number of individuals of a given species). In many cases, the time
evolution of the observed y(k) can be described by a NARMA model [26] of the form

y(k) :Ffb/(k —1),...,y(k—ny),ek),...,e(k—n,)], (18)

where n, and n, are the maximum lags considered for the process and noise terms, respectively. Moreover, y(k) is the
output time series and e(k) accounts for uncertainties, possible noise and unmodeled dynamics. F*[-] is some nonlinear
function of y(k) and e(k).
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In this paper, the map F*[-] is a polynomial of degree £ € Z*. In order to estimate the parameters of this map, Eq. (18)
can be expressed as

y(k) = gk —1)"0+ (k) (19)

where (k) are the identification residuals. Moreover, Y (k — 1) is a vector which contains output and residual terms up to
and including time k£ — 1 and @ is the estimated parameter vector obtained by minimizing the following cost function [30]:

v () = % Z &k, 0). (20)

Parameter estimation is usually performed for a linear-in-the-parameters orthogonal model which is closely related
to (19) and which is represented as

nptng

V) = Y gnlk) + E(6) @)

4

where n, + n: is the number of (process plus noise) terms in the model, {g,-}fgn' are parameters and the monomials
{w; (k)}fg" are orthogonal over the data records. Finally, parameters of the model in Eq. (19) can be calculated from
the {gi}fj"i. This procedure has two major advantages, namely: (i) it reduces inaccuracies due to numerical ill-con-
ditioning; (ii) it aids in selecting the structure of the final model.

A criterion for selecting the most important terms in the model can be devised as a byproduct of the orthogonal
parameter estimation procedure. The reduction in the MSPE due to the inclusion of the ith term, gw;(k), in the
auxiliary model of Eq. (21) is (1/N)g?w?(k). Expressing this reduction in terms of the total MSPE yields the error
reduction ratio (ERR):

202
[ERR] =2 ®) i ony g (22)
y* (k) '
Hence those terms with large values of ERR are selected to form the model.

In order to search for discrete-time models the following procedure was used. Data obtained by integrating the
model (3) were sampled according to the procedure detailed in [31]; this yielded 7y = 1.0. Time series with 600 (this
corresponds roughly to 15 cycles only) observations were used in every case. A set with 296 candidate terms was
generated by taking all the linear, quadratic and cubic combinations up to delay n, = 10. A moving average (MA)
model with 10 linear terms was used during parameter estimation in order to reduce bias. Such terms are not used in the
simulations and therefore are not shown below. The ERR criterion, previously described, was used to classify the
candidate terms according to their relative importance in explaining the underlying dynamics. The choice of how many
terms to retain was made based upon topological analysis of the identified candidate models. This entire procedure was
repeated in three different situations, namely assuming only the x variable was available, and then, in turn, the same was
performed using the y and z time series. Several models were found when using x and y time series, whereas no model
was found from the z-variable. This is totally in accord with the observability indices.

Two models obtained from the x and y time series are, respectively,

x(k) = 3.38040x(k — 1) — 4.30812x(k — 2) + 2.56162x(k — 3) — 1.06161x(k — 4) — 1.21955x*(k — 5)

+2.56978x(k — )x(k — 5)x(k — 6) — 3.26196x(k — 3)x(k — 4)x(k — 6) + 0.48632x(k — 5)

+2.53047x* (k — 4)x(k — 5) + 0.80920x(k — 4)x(k — 7) — 4.55223 x 1073x*(k — 1)x(k — 8)

+ 1.47483x(k — 3)x(k — 6) — 0.23716x% (k — 5)x(k — 6) — 0.74444x(k — 1)x(k — 7) — 0.45312x*(k — 6)

+0.50283x%(k — 2)x(k — 3) — 2.02429x(k — 1)x(k — 4)x(k — 5), (23)
y(k) = 2.66466y(k — 1) — 2.98381y(k — 2) + 2.13113p(k — 3) — 0.88570y(k — 4) + 0.12437y(k — 5)

+3.59558 x 1073y(k — 6) 4 1.68574y*(k — 1) + 0.46715y(k — 2)y?(k — 3) + 1.89658y*(k — 1)y(k — 5)

— 1.00584 x 1072 +0.99980y° (k — 4) + 0.96611y(k — 1)y*(k — 6) — 0.99972)* (k — 5)y(k — 6)

—3.31664y(k — 1)y(k — 3) — 0.19571y(k — )y(k — 4)y(k — 6) + 1.28748y(k — 2)y(k — 4)

—2.61306y(k — 2)y(k — 4)y(k — 6). (24)

These model terms are presented in the same order of priority as determined by the ERR criterion. Only the auto-
regressive parts of the models are shown.
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Fig. 6. Plane projection of the attractors generated by the models obtained from the (a) x- and (b) y-variables, respectively. No model
from the z-variable — the generalist predator — has been obtained with the NARMA technique. These two plots should be compared to
Figs. 3(a) and 3(b), respectively.

As expected from the observability indices, it is very difficult to obtain a global model from the time evolution of the
generalist predator. In fact, no model has been obtained from such a time series. Successful models were only obtained
from the prey and the specialist predator time series. The corresponding attractors are shown in Fig. 6. From a visual
inspection, these two models seem to generate phase portraits rather equivalent to those expected. Compare the model
attractor from the x-variable (Fig. 6(a)) with the phase portrait reconstructed from the same variable (Fig. 3(a)) and the
model attractor from the y-variable (Fig. 6(b)) with the phase portrait shown in Fig. 3(b). A more accurate validation is
performed by computing a first-return map to the associated Poincaré sections 2, and 2,, respectively. The first-return
map associated with the model attractor obtained from the x-variable is slightly different than the original (Fig. 4(a)). In
particular, a layered structure is observed on the first increasing branch. It is also clear that the branches are less
developed than the original ones, as is easily exhibited when the population of periodic orbits are extracted. A less
numerous population of periodic orbits is extracted. It may depend slightly on the time series used for extracting pe-
riodic orbits (3500 cycles are used here). Some periodic orbits may be very poorly represented (or even not completely
present) in this time series. Nevertheless, the population extracted from the attractor generated by the model obtained
from the y-variable is closer to the population extracted from the original attractor (Table 1). Indeed, the model
from the x-variable shares 12 orbits with the original system whereas the model from the y-variable includes 23 orbits
(Table 1). Moreover, no layered structure is observed (Fig. 7(b)) as for the original first-return map (Fig. 4(b)).

The model obtained from the time evolution of the specialist is therefore much better than the one obtained from
counting the prey. Consequently, it appears that if one has to choose one species to count, the specialist predator should
be preferred. This may be understood from a dynamical point of view since it is the single species that directly interacts
with the other two.
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Fig. 7. First-return maps to a Poincaré section for the two models obtained from the (a) x- and (b) y-variables, respectively. To
generate these plots, models (23) and (24) were iterated to produce 30 x 103 data points. On the other hand, such models were obtained
from just 600 observations of the respective species. These plots should be compared to Figs. 4(a) and 4(b), respectively.
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5.2. Continuous-time models

Very similar results are obtained with a global modeling technique using continuous-time models. In this approach it
is assumed that a single scalar time series, X; = x = h(x), is recorded, where, as before, /(-) is a measurement function.
The aim is then to obtain a vector field equivalent to the original system using a basis consisting of the observable and
its derivatives such as

Xl :X27

XZ = X37
(25)

Xde = F(Xth, e 7Xde)7

where d. is the embedding dimension and the model function F depends on d. variables which are s and the d. — 1
successive derivatives of 5. The model function F can be estimated by using a multivariate polynomial basis on nets [32].
The algorithm requires the definition of modeling parameters, which are:

d., the embedding dimension,

N., the number of centers at which the function is evaluated,

At, the time step between two successive centers; in this work Af is constant, but this is not a requirement,

N,, the number of retained multinomials and

Tw, the window length on which the derivatives are computed by using polynomial interpolation over the window.
Derivatives are then obtained by analytically deriving such polynomials. The estimated model function, £, then
reads as

RAREIR S

NP
FX1, X, X)) = 0,0, (26)
p=1

where 0, are the parameters and y” are multivariate monomials (or multinomials) of the form

Y= XX X (27)

where the integers p are related to ny,-tuplets (ny,na, ..., n, ) by a bijective relationship discussed in [32]. The modeling
parameters d., N, At, N, and 1, can be determined with the aid of an error function described in [33]. The model (26) is
based on a differential embedding, i.e. a phase space spanned by the derivative coordinates.

Writing (26) at N, centers on the data yields a set of N, equations of the form

X (1) pry e ™) ][ On
X, (NC) YN e NG ] L O,
where ri # rj and 1 <rl,...,rn, <N, and the numbers inside the parentheses indicate to which center the variable is

related. Once the model structure is determined the parameter vector [0,; - - - 0,nP]T can be estimated by standard least-
squares techniques.

Three continuous differential models are obtained with this technique. Indeed, a model has been obtained from each
variable with the modeling parameters as follows. The embedding dimension d, is equal to 3 for all of them as shown in
Fig. 2. The integration step is ot = 0.01 of the dimensionless time. For all the time series, the window 7, for inter-
polating the time series is 70z. The three remaining modeling parameters (N, At, N,) are
e (200,17,35) when s = x;

e (110,20,56) when s = y;

e (300,20,56) when s = z.

Thus the model from the x-variable has 35 terms and, consequently, has an order-4 polynomial model function. The
other two models have 56 terms which constitute order-5 polynomial model functions. Plane projection of the attractor
generated by these three models are shown in Fig. 8. The two models obtained from the x- and y-variables are stable and
may be numerically integrated over more than 3500 cycles. Contrary to this, the best model obtained from the z-variable
is unstable although its transient regime evolves very close to an apparently chaotic attractor. After that transient
regime, the trajectory is ejected to infinity (Fig. 8(c)). Roughly 80 cycles can only be generated. This second modeling
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Fig. 8. Plane projection of the attractors generated by the models obtained from the three variables of the ecological model (a) x, (b) y
and (c) z, respectively. The first-return maps are computed in the Poincaré sections 2., 2, and 2., respectively. Only an unstable model
is obtained from the z-variable. After a metastable chaotic regime, the trajectory is ejected to infinity as indicated by the arrow. Only 80
cycles are obtained to compute the first-return map, which is thicker than the other two.

technique also confirms that the z-variable is not a good observable for the dynamics, i.e. a global model is very difficult
to obtain from it.

The quality of the models obtained from the x- and y-variables is investigated using first-return maps to Poincaré
sections, as for the discrete-time models. The model from the x-variable presents a four-monotonic-branch first-return
map, i.e. the dynamics is slightly more developed than the original attractor. As a consequence, the population of orbits
with a period less than 7 is larger for this model (63 orbits) than for the original attractor (40 orbits reported in Table 1).
The model attractor from the x-variable is therefore characterized by a four-strip template. Among the four strips, three
have the same relative organization in the phase space as the original attractor. Thus, the corresponding template is the
one shown in Fig. 5 but with one additional strip having a local torsion equal to +3. This model therefore generates an
attractor which corresponds to the dynamics that the original system could generate but with slightly different control
parameters [3]. Comparing with the model obtained with the NARMA technique, the quality of the model from the



1112 C. Letellier et al. | Chaos, Solitons and Fractals 13 (2002) 1099-1113

x-variable is roughly the same since the continuous-time model shares only 13 orbits with the original system. The
NARMA technique tends to reduce the number of periodic orbits whereas the modeling technique with derivative
coordinates tends to increase it.

As observed with the discrete-time models, the model obtained from the y-variable is definitely the best one. Indeed,
the first-return map (Fig. 8(b)) is very similar to the one computed with the original system (Fig. 4(b)). In that case, the
model shares 27 orbits with the original system (3). A similar conclusion can therefore be given, i.e. counting the
specialist predators provides the best possible data.

6. Conclusion

A fairly realistic three-species food-chain model based on the couplings between a Lotka—Volterra and a Leslie—
Gower scheme has been investigated. It has been shown that such a food chain can be investigated by only counting a
single species. Indeed, the phase space reconstruction techniques allow one to obtain a representation of the phase space
which is equivalent to the original one. In other words, dynamical analysis in a phase space reconstructed from the time
evolution of a single species can be safely performed. The time evolution of the non-counted species are contained in the
recorded one because all the species are coupled through the three-species food-chain model. When only a topological
analysis is in view, it does not matter too much which species is counted. But this usually requires thousands of ob-
servations (e.g. 30 000). One way of overcoming this limitation is to obtain a global model from a much smaller data set
(e.g. less than 1000) and then use the model in the analysis. Nevertheless, when a global model is attempted, the choice
of the species to count becomes very crucial. In particular, we have shown that if the generalist predator is counted,
there is no hope for obtaining a model using a global modeling technique although in practice this might be the easiest
species to count. This is quantified by observability indices which clearly indicate that the observability of the dynamics
underlying this realistic three-species food chain is significantly less for the generalist predator located at the end of the
food chain than for the other species. The best model has been obtained for the specialist predator which is located in
the middle of the food chain. It should be noted that this specialist predator has direct interaction with the other two
species involved in this food chain. It can be conjectured that the greater the interaction of a species, the better the
observability of the dynamics. It is therefore important to choose properly the species to count for investigating a food
chain to have a chance to recover the dynamics of the whole food chain, i.e. the dynamics of the non-counted species.
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