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Unimodal order in the image of the simplest equivariant chaotic system
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The simplest equivariant chaotic dynamics is investigated in terms of its image, i.e., under the 2→1
mapping allowing one to obtain a projection of the dynamics without any residual symmetry. The inversion
symmetry is therefore deleted. The bifurcation diagram can thus be predicted from the unimodal order although
the first-return map computed in the original phase space exhibits three critical points. This feature is the same
as the one observed on the Burke and Shaw system although this latter system has a rotation symmetry.
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Symmetries have always played an important role
physics, from fundamental formulations of basic princip
to concrete applications, and are present in a variety of c
otic systems. Among them, there is the well-known Lore
system@1# which has a rotation symmetry. This system w
the simplest chaotic flow up to 1976 when Ro¨ssler @2# de-
leted all the irrelevant terms from the Lorenz system
obtaining chaotic behavior. The Ro¨ssler system no longer ha
symmetry properties.

During the last five years, some work has been devote
the search for the simplest set of equations that can gen
a chaotic behavior@3#. Most of the time, very simple system
may be written in the form of autonomous third-order diffe
ential equations

x̂5f~x,ẋ,ẍ!. ~1!

Such systems are under study in this paper. Recently, on
us @4# proposed the algebraically simplest example of a d
sipative equivariant chaotic system. It consists of three te
including one quadratic nonlinearity:

x̂52a ẍ1xẋ22x. ~2!

This system can be rewritten as a set of three ordinary
ferential equations

ẋ5y, ẏ5z, ż52az1xy22x, ~3!

where y5 ẋ and z5 ẍ. This system is equivariant, i.e.,
obeys the relationg•f(x)5f(g•x) whereg is a 333 matrix
defining the symmetry properties. In the present case, thg
matrix

g5F 21 0 0

0 21 0

0 0 21
G ~4!

defines an inversion symmetryP. This means that the vecto
field f is invariant when (x,y,z) are mapped into (2x,2y,
2z). The system~3! has a single fixed pointF0 located at
the origin of the phase space. It is a saddle focus with
negative real eigenvalue and two complex conjugate eig
values with positive real parts.
1063-651X/2001/64~6!/067202~4!/$20.00 64 0672
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Before investigating the dynamical behavior of this eq
variant chaotic system, let us give a comment on recent
velopments in the classification of nonlinear dynamical s
tems. Thomas and Kaufman@5,6# showed that dynamica
systems can be interpreted in terms of feedback full circu
In particular, the description of dynamical systems by fee
back circuits is associated with their fixed points. Such
description could provide a way for classifying dynamic
systems directly from their algebraic form. Among the d
ferent feedback circuits, those involving all the dynamic
variables play a preponderent role in the dynamical beha
since they are the only ones that may be associated with
fixed points of the systems. These circuits are the so-ca
full circuits @6#. The full circuit of anm-dimensional system
may be identified using them-factor products, the so-calle
loop products, appearing in the characteristic equation a
ciated with the Jacobian matrixA @6#. In the case of three-
dimensional~3D! systems, the determinant consists of s
loop products, which are

Det~A!5a11a22a332a11a23a322a12a21a332a12a23a31

1a13a32a212a13a31a22. ~5!

Thus, six full circuits may be associated with a 3D dynam
cal system. In the present case, the Jacobian matrix is

Ai j 5F 0 1 0

0 0 1

y221 2xy 2a
G , ~6!

and consequently, only the loop producta12a23a315y221 is
different from zero. Note that, when the chaotic dynamics~1!
are considered, only a single full circuit can be obtained. T
different types of dynamics will be distinguished by the fix
points and their associated domain where the circuit is ei
positive or negative. For instance, one negative circuit i
prerequisite for a periodic oscillation and the existence
one positive full circuit a prerequisite for multistationarity.

The circuit associated with the simplest equivariant c
otic dynamics isambiguous, i.e., its sign depends on th
location in phase space. Whenuyu,1, the full circuit is nega-
tive. It is positive otherwise. The fixed pointF0 is located in
the domain where the circuit is negative. Since the full c
cuit is ‘‘pure’’ in the sense that its loop product does n
©2001 The American Physical Society02-1
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contain any on-diagonal elementaii , it should be associate
with a fixed point that is a saddle focus. When a pure f
circuit is negative~positive!, the real eigenvalue is negativ
~positive! and the real parts of the conjugate complex eig
values are positive~negative!. In the case of the chaotic sys
tem ~3!, the fixed pointF0 is located in the domain of phas
space where the full circuit is negative. This is in agreem
with the fact that it is a saddle focus characterized by
negative real eigenvalue. The full circuit is therefore act
in the domainuyu,1. The other domain is irrelevant for th
topology of the dynamics.

When a52.027 717, a chaotic attractor~Fig. 1! is ob-
tained when the initial conditions are (x0 ,y0 ,z0)
5(4.0,0.0,0.0). The symmetry with respect to the origin
the phase space may be easily checked. This attractor i
vestigated using the Poincare´ section

PO5$~xn ,zn!PR2uyn50,ẏn,0%. ~7!

A bifurcation diagram@Fig. 2~a!# is computed versusa
within the interval@2.027 717;2.12#. Whena is decreased
two simultaneous period-doubling cascades are obser
one being the symmetric image of the other under the ac
of g. After the accumulation point fora52.0840, the behav
ior becomes chaotic. Depending on the initial conditio
two attractors, symmetric in phase space, are observed.
feature persists up to an attractor merging crisis. This cr
corresponds to a sudden increase in the size of the ch
attractor@Fig. 2~a!# and results from two attractors that co
lide to form a single symmetric attractor@7#. In fact, the
crisis appears when each attractor is characterized by a
modal map for which the symbolic dynamics is comple
i.e., all periodic orbits that may be encoded using two sy
bols are embedded within the attractor. Within this inter
for the a values, the bifurcation diagram can be predict
from the unimodal order@8#. The attractor merging crisis

FIG. 1. Chaotic attractor generated by the simplest equivar
chaotic system just before the attractor merging crisisa
52.027 717).
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occurs fora'2.0644. For smaller values ofa, a single at-
tractor invariant under the action ofg is observed~as well
exemplified in Fig. 1!.

When a,2.0644, the single symmetric chaotic attract
is characterized by a multimodal map which may have up
three critical points as observed fora52.027 717~Fig. 3!.
Periodic orbits are thus encoded on the symbol setS4

5$1̄,0,1,2%. In that case, the bifurcation diagram cannot
predicted by the kneading theory. Indeed, when more t
one critical point is involved, there is no longer univers
order for the creation/destruction of periodic orbits when
control parameter is varied.

Nevertheless, when an equivariant system is considere
may be possible to simplify the analysis by determining
symmetry properties. Such a procedure was initially int
duced by mapping the dynamics in a fundamental domain
the phase space@9# and recently developed by using the im
age of equivariant systems@10#, i.e., the 2→1 mapping of
the system to obtain a projection of the dynamics witho
any residual symmetry. The dynamical system~3!, which is

nt

FIG. 2. Bifurcation diagrams versusa for the simplest chaotic
dynamics~3! and its image.

FIG. 3. First-return map of the simplest equivariant chaotic s
tem just before the attractor merging crisis (a52.027 717).
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BRIEF REPORTS PHYSICAL REVIEW E 64 067202
invariant under inversion symmetry, is thus mapped int
locally equivalent dynamical system. This is done by co
structing a nonlinear coordinate transformation (x,y,z)
→(u1 ,u2 ,u3) in which the coordinates (u1 ,u2 ,u3) are in-
variant under the inversion symmetryP. The elementary
polynomials in (x,y,z) of degree up to 2, which are invarian
under P, are xy, yz, zx, x2, y2, and z2. The following
coordinate transformation is convenient:

w5Uu15x22y2,

u252xy,

u35z2.

~8!

The invariant dynamical system equationu̇i5gi(u) where
u5(u1 ,u2 ,u3) is determined in a straightforward way:

u̇i5
]ui

]xj

]xj

] dt
5

]ui

]xj
F j~x!5gi~u!. ~9!

Using 2x25r1u1 and 2y25r2u1 wherer5Au1
21u2

2, the
invariant equations of the chaotic system~3! are

u̇15u26A~r2u1!u3, u̇25r2u16A~r2u1!u3,
~10!

u̇3522au36Fr2u1

2
21GA~r1u1!u3.

The image attractor~Fig. 4! can also be obtained by applyin
the mapw onto the original attractor. No residual symmet
can be identified.

The image attractor is investigated using the Poincare´ sec-
tion

PI5$~u1,n ,u3,n!PR2uu2,n50,u̇2,n,0%. ~11!

Since the Poincare´ section is unidimensional, a first-retur
map to this Poincare´ section may be built with a single var
able to define the partition of the attractor. The map is u

FIG. 4. Image of the simplest equivariant chaotic system
before the attractor merging crisis (a52.027 717).
06720
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modal for a52.027 717~Fig. 5! and not trimodal as ob-
served in the original phase space~Fig. 3!. The increasing
branch touches the bisecting line. The symbolic dynamic
thus complete. A mapping of a four-branch first-return m
into a unimodal map when the symmetry of a system
removed has already been observed in the Burke and S
system@9#. The analysis that was performed can be rep
duced for the simplest chaotic equivariant system.

When the 2→1 mappingw is applied, an orbit embedde
within the original attractor is transformed into an orbit em
bedded within the image attractor. A mapF from symbolic
sequences withp symbols on the setS45$1̄,0,1,2% to sym-
bolic sequences of 2p symbols on the setS25$0,1% can be
defined as@9#

F5UF~ 1̄!510,

F~0!511,

F~1!501,

F~2!500.

~12!

This transformationF maps symbols in blocks of the sam
parity. For instance, the orbit encoded by (11̄1)O in the origi-
nal system is encoded byF̃(1̄11)O5(100101)I in the image
system. It may also appear that two different original orb
are mapped into the same image orbit. For instance, th
the case of the original orbits (11̄1)O and (21̄0)O which are
both mapped into the image orbit (100101)I . This is the
consequence of the 2→1 mapping which allows us to obtai
the image system from the original system. Both perio
orbits appear simultaneously when a control paramete
varied. These connected orbits are therefore characterize
a unique orbit in the image system. Consequently, when
mapF is inverted and applied to such an orbit, two differe
symbolic sequences are obtained from the single one in
image system.

t
FIG. 5. First-return map of the image system of the simpl

equivariant chaotic system just before the attractor merging c
(a52.027 717). A similar map may be obtained using theu3 vari-
able.
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TABLE I. Evolution of the orbit spectrum of the simplest equivariant chaotic system in the r
@2.027 717,2.12# from the unimodal order. Certain orbits are not present in this table since they are ob
from higher periodic orbits. Let us note the exception of the orbit~1!, which is not mapped to an orbit whos
period is doubled due to the fact that~1! identifies with~11!, which is mapped to~0! by Eq. ~13!.

(S) I (S)O5F̃21(S) I
(S) I (S)OF̃21(S) I

1 0 10011 1̄1020
10 1̄ 1 100111 1̄10 200

1011 1̄0 10 100110 1̄11̄ 201

101110 1̄01̄ 101 1001 1̄1 20

101111 1̄00 100 1000 1̄2 21

10111 1̄0010 100010 1̄21̄ 211

10110 1̄0111̄ 100011 1̄20 210

101 1̄01 10001 1̄2021
100 112 10000 1̄2122
100101 1̄11 21̄0 100001 1̄21 220

10010 1̄1121̄ 100000 1̄22 221
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Since there is a nonambiguous correspondence betw
orbits from the original attractor and orbits from the ima
attractor, the inverted mapF21 defined as

F215UF21~10!51̄,

F21~11!50,

F21~01!51,

F21~00!5~2!,

~13!

allows us to predict the symbolic sequences of the or
within the original attractor from the orbits embedded with
the image attractor. The paired orbits are easily identified
applying a circular permutation toward the left on the sy
bolic sequence of the original orbit. For instance, from
sequence (101100)I , the sequence (10̄2)O is obtained. The
sequence of the second orbit is obtained asF21(011001)I
5(11̄1)O . When a single orbit must be obtained, the tra
formed sequence underF21 is not changed under any circu
lar permutation over the symbols.

Thus, it is possible to predict the evolution of the orb
spectrum associated with the original attractor from the u
modal order identified in the image system~Table I!. In par-
ticular, the attractor merging crisis between both attract
occurs when the first periodic orbit, with a symbolic s
quence containing at least once each symbol 1,̄ 0, and 1,
06720
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can be constructed. From the bifurcation diagram@Fig. 2~b!#
computed for the image system, it may be noted that
attractor merging crisis of the original system appears w
the attractor is no longer a period-2 chaotic band, i.e., w
the two branches resulting from the period-doubling casc
become a single one (a'2.0644). This feature occurs jus
after the saddle-node bifurcation that induces the two or
encoded by~101110! and ~101111!, respectively. In Table I,
the reported orbits have a period too small to allow an ac
rate localization of the attractor merging crisis in the bifu
cation diagram.

One of the simplest equivariant chaotic systems has b
investigated using its image system. It has been shown
its bifurcation diagram can be described from the unimo
order using a nonambiguous map applied to the symb
sequences of the periodic orbits embedded within the im
attractor. Such a feature was already observed on the B
and Shaw system, which has a rotation symmetry rather t
the inversion symmetry observed on this equivariant cha
system. This scenario is therefore more general than initi
expected. One should note that the images of the Burke
Shaw system and the simplest equivariant chaotic sys
considered here have the same template, corresponding
horseshoe template with a global half turn.

C.L. wishes to thank Rene´ Thomas and Marcelle Kauf
man for helpful discussions on the description of dynami
systems with feedback circuits.
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