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Ansatz library for global modeling with a structure selection
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The information contained in a scalar time series and its time derivatives is used to obtain a global model for
the underlying dynamics. This model provides a description of the time evolution of the system studied in a
space spanned by the time series and its successive time derivatives which is expected to be equivalent to the
original phase space. Differential models are, in general, very complicated and do not necessarily capture all
properties of the original dynamics. The possibility of choosing a form among an ansatz library for the original
system which allows a structure selection for the differential model is considered. It allows for the reduction of
the complexity of the model and the recovery of the right property when the differential model is transformed
back into the space associated with the ansatz.
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I. INTRODUCTION

Experimentally measured data series often have the f
of a single variable time seriesx(t) sampled at regular inter
valsts . In principle, it is possible to reconstruct phase spa
topological properties of the underlying dynamics from su
a scalar time series@1#. Moreover, models obtained by glob
modeling@2–4# can be superior to traditional linear mode
ing methods such as ARMA models. The procedure to fin
global dynamical model in the form of a set of coupled o
dinary differential equations is often called the ‘‘dynamic
inverse problem’’ @5,6#. In general, however, one has n
prior knowledge of the exact underlying variables of t
original system, especially when only a scalar time serie
available. In this case, the estimation of a global model
be difficult, since one has no idea of the proper dimensi
ality or functional model form which may critically affect th
estimation procedure. Nevertheless, it is important to
structure selection not only to reduce the number of te
involved in the estimated models but also to correctly se
their type, thus improving model quality@7#. It has also been
observed that when the right structure is selected, it beco
easier to obtain a model@8#.

When a differential model is attempted, all of the info
mation is included in a model functionF constituted by a
multivariate polynomial depending on thedE variables,
wheredE is the embedding dimension@9#. In such a case, the
description of the dynamics is given in a reconstructed sp
the so-called differential embedding, spanned by the
corded time series itself and its (dE21) derivatives. The
number of terms involved in such a model function can
quite large~'50!. Since the obtained differential model ma
be used to extract analytically some information about
dynamical properties, it is rather important to reduce
length. In order to do that, a structure selection origina
introduced in@10# has been recently adapted to the case
differential models@11#. It has been observed that the com
plexity of the differential model may be reduced and its qu
ity improved, i.e., the parsimonious model generates a
1063-651X/2001/64~1!/016206~15!/$20.00 64 0162
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namical behavior closer to the original one with a simp
model function@12#.

Nevertheless, although the differential embedding is
pected to be equivalent to the original phase space whic
usually unknown, some characteristics of the original d
namics are not always well reproduced when a phase por
is reconstructed from a single time series. Such a featur
particularly true when the original system has certain sy
metry properties. For instance, the Lorenz system@13# gen-
erates an attractor which is globally invariant under a ro
tion around thez axis. When a reconstruction is attempte
starting from thex or y variable, the reconstructed attract
possesses an inversion symmetry which is quite differ
from the original one@14#. It is, therefore, of great interest t
apply a technique that would allow a description of the d
namics in a reconstructed phase space with the same
metry properties even when only a single scalar time serie
known.

Our aim is to use an ansatz library for structure select
that allows for the reduction of the complexity of the o
tained model and the recovery of some properties of
original dynamics. The ansatz corresponds to a chosen s
ture for the original system generating the recorded time
ries. Using an embedding dimension equal to 3, we cho
an ansatz with respect to the coordinates~x,y,z! which allows
the inversion of the mapF: (x,y,z)→(X,Y,Z), where
~X,Y,Z! are the time series itself and its successive deri
tives, respectively. The model functionsF̃ i referring to the
recorded data have a structure corresponding to the ansaAi
from the ansatz library. The adequate ansatz is identi
when a transformation back into the ansatz coordina
~x,y,z! is possible. The applicability of such a procedure
exemplified by using a library constituted by two differe
ansatz and two different data sets.

The paper is organized as follows. In Sec. II the glob
modeling technique is presented as well as how to derive
ansatz library for structure selection. This method works
two steps: ~i! estimating the functionF with each ansatz of
the library and~ii ! trying to transform the model back into
model with the ansatz structure. The adequate ansatz is
©2001 The American Physical Society06-1



is
th
he
ig

on
ac
nt
th

e
an
e

su
c
u

e
bl
e
h
a
is
e
th
th
as

d
.
e
o
by

e
n
ll
l
or

-

dif-

del

al

ined

on
ted
d to

c-
al
red.
and
ted

al
be
rts
n-

ther
ar
.e.,
est.
the
ts

hat
inal

are

ate
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one for which the transformation is possible. In Sec. III th
technique is applied to two dynamical systems, namely
Lorenz and the Ro¨ssler systems using two ansatz from t
library. The obtained models are then compared to the or
nal ones. Section IV is the conclusion.

II. GLOBAL MODELING TECHNIQUE

An approach for global modeling with structure selecti
is introduced. The first step is to build an ansatz library. E
ansatz represents a predefined structure for the differe
model to estimate. Indeed, starting from a given ansatz,
second step to define the one and only restricted structur
the differential model can be computed. Thus, from the
satz library a differential model library is computed. Th
second step consists of performing global modeling as u
@3,15# with each differential model. The third step is to sele
the ansatz corresponding to an invertible map that allows
to express the ansatz coefficients versus the model co
cients. Indeed, we assume that when this map is inverti
the ansatz is close to the original system. The ansatz mod
thus used to perform a better analysis of the dynamics. T
procedure will be detailed in the following way. The usu
global modeling technique to obtain differential models
reviewed in Sec. II A Section II B is devoted to building th
ansatz library, and Sec. II C explains how the structure of
differential model is selected from the predefined ansatz,
is, how to map the ansatz to the model in a very simple c
The general case is developed in Sec. II D.

A. General approach

The modeling method presented in this paper is applie
systems whose dimensionD of the original phase space is 3
We limit ourselves to the cases where the embedding dim
siondE is also fixed to be equal to 3. Our method is based
the global vector field modeling technique introduced
Gouesbet and co-workers@3,9#. Very often the time evolu-
tion of all dynamical variables required for a complete d
scription of the system studied is not known, and we can
recover the original set of differential equations. We usua
know a single scalar time series, and only a global mode
obtained by using a reconstructed space spanned by co
nates derived from the recorded time series@16#.

Let us consider a dynamical system inR3(u,v,w),

g[H u̇5 f 1~u,v,w!

v̇5 f 2~u,v,w!

ẇ5 f 3~u,v,w!
. ~1!

Starting from a single time series$ui% i 51
N , whereN is the

number of points andui5u(t i), we obtain a set of indepen
dent variables by computing the derivatives

Xi5ui ,

Yi5
dui

dt
, ~2!
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d2ui

dt2
.

A representation of the phase portrait is then given in a
ferential embeddingR3(X,Y,Z). With such a set of coordi-
nates, a modeling procedure is applied to obtain a mo
from the recorded time series$ui% i 51

N . Such a model reads

G[H Ẋ5Y

Ẏ5Z

Ż5F~X,Y,Z,an!5Sn51
Na anPn

, ~3!

wherean are the coefficients of the model functionF to be
estimated andPn are the monomialsXiYjZk @3#. The indices
~i,j,k! for monomials may also be negative yielding a ration
model. System~3! is called thedifferential modeland its
parameters can be obtained by solving an overdeterm
system ofN equations withNa unknown coefficientsan(N
@Na) reading as

S Ż1

Ż2

]

ŻN

D 5S F~X1 ,Y1 ,Z1!

F~X2 ,Y2 ,Z2!

]

F~XN ,YN ,ZN!

D . ~4!

In the method discussed in@3#, this model function
F(X,Y,Z,an) is obtained by using a Fourier expansion
the basis of orthonormal multivariate polynomials genera
from the data set. A SVD procedure may also be preferre
solve this set of equations@15#. The latter is used in this
work.

B. Ansatz library

When a differential model is attempted, the model fun
tion F(X,Y,Z) is usually estimated by using a polynomi
expansion that involves a larger set of terms than requi
The spurious terms increase the complexity of the model
decrease its qualitity, i.e., the asymptotic behavior genera
by the obtained model may differ more from the origin
dynamics. In order to avoid that, structure selection must
performed. Different techniques exist. One of them sta
with a model function estimated on a full polynomial expa
sion up to a certain order and deletes spurious terms@12#. In
this paper we propose a quite different procedure. Ra
than modifying or building a model structure for a particul
case, we start with different complete model structure, i
the so-called ansatz library, out of which we choose the b
Each ansatz is thus used for selecting the structure of
model function, i.e., for reducing the number of coefficien
involved in the estimated function.

In order to obtain a model with an adequate structure t
expresses the model equations in a form closer to the orig
one than the differential model~3!, an ansatz library is used
to select a structure for the original system. The ansatz
based on dynamical variables~x,y,z! which may differ from
the unknown original dynamical variables (u,v,w). The an-
satz are selected in order to be able to invert the coordin
6-2
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transformationF between the dynamical variables~x,y,z! on
which the ansatz is built and the derivative coordina
~X,Y,Z! induced by the recorded time series. In the sub
quent part of this paper, thex variable will designate the
observable in order to avoid redundancy, i.e., the sys
investigated will be rewritten in the form that the observa
corresponds to the first ordinary differential equation.

Let us limit ourselves to the quite general dynamical s
tem equations

ẋ5a01a1x1a2y1a3z1a4x21a5xy

1a6xz1a7y21a8yz1a9z2

5 f 1~x,y,z!,

ẏ5b01b1x1b2y1b3z1b4x21b5xy

1b6xz1b7y21b8yz1b9z2

5 f 2~x,y,z!, ~5!

ż5c01c1x1c2y1c3z1c4x21c5xy

1c6xz1c7y21c8yz1c9z2

5 f 3~x,y,z!,

where the right-hand side is constituted by order two mu
variate polynomials. There is no conceptual difficulties
extend this approach to higher-order polynomial syste
This dynamical system is associated with the phase sp
spanned by the dynamical variables~x,y,z!. By using the de-
rivative coordinates, a phase space may be reconstructed
a differential model~3! can be obtained. Our objective is t
use some ansatz, which are a subpart of the general form~5!
to select the structure of the differential model estima
from a time series. Since we do not knowa priori the exact
model form when we are faced with an experimental syst
we can only assume that it could correspond to a given
satz defined by a set of nonzero coefficients$ai ,bj ,ck%
among those of the general form~5!. Starting from a given
ansatzA, the derivative coordinates can be expressed ve
the dynamical variables involved inA according to the trans
formation

Fp5H X5x

Y5 f 1~x,y,z!

Z5
] f 1

]x
f 11

] f 1

]y
f 21

] f 1

]z
f 3 .

~6!

This function must be invertible to express the ansatz co
dinates~x,y,z! versus the derivative coordinates~X,Y,Z!. Such
an inverse mapFp

21 is required to express the functio
F(X,Y,Z) versus the ansatz variables. Most of the possib
ties should correspond to an invertible mapFp constituted
by polynomial functions. The mapFp is necessarily invert-
ible when it is restricted to be on the form
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Fp5H X5x
Y5f1~x,y!

Z5f2~x,y,z!
, ~7!

where f1(x,y) and f2(x,y,z) are polynomial functions.
Since we would like to avoid terms with noninteger pow
like Ax or other, the functionf1(x,y) must be linear iny,
i.e., can be decomposed into two functions

f1~x,y!5h1~x!1g1~x!y, ~8!

whereh1(x) may be a second-order polynomial inx. Since
we limited ourselves to functionsf i ’s constituting the ansatz
A as second-order polynomials,g1(x) must be a first-order
polynomial inx and may have only two different forms,

g1~x!5h1,
~9!

g1~x!5h1x,

where h1 is a real coefficient. Starting from Eq.~8! and
usingg1(x)5h1xn with nPN0;<1, we obtain

f2~x,y,z!5 f 2g1~x!1y2g1~x!g18~x!

1yh1~x!g18~x!1yg1~x!h18~x!

1h1~x!h18~x!

5xnf 2h11nx2n21y2h1
2

1nxn21yh1h1~x!1xnyh1h18~x!

1h1~x!h18~x!. ~10!

Using similar arguments forf1(x,y), the functionf 2 must
be linear inz, i.e.,

f 2~x,y,z!5h2~x,y!1g2~x,y!z. ~11!

The functionf2 may thus be written in the form

f2~x,y,z!5nx2n21y2h1
21xnzh1g2~x,y!

1nxn21yh1h1~x!1xnh1h2~x,y!

1xnyh1h18~x!1h1~x!h18~x!. ~12!

When g1(x)5h1, we have two possibilities forg2(x,y),
which are

g2~x,y!5h2.
~13!

g2~x,y!5h2x,

and wheng1(x)5h1x, only g2(x,y)5h2 is suitable. When
h1(x)50, the funcitonsf1 andf2 reduce to

f15xnyh1,

f25nx2n21y2h1
21xnzh1g2~x,y!1nnh1h2~x,y!. ~14!

In this case the functiong2(x,y) can take the additional form
6-3
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g2~x,y!h2y. ~15!

These three possibilities forg2(x,y) can be summarized as

g2~x,y!5h2xmypz,

with
~16!

h1~x!50: m,pPN0; n1m<1,

h1Þ0: p50;n,mPN0; n,m<1.

The y andz variables are thus given as

y5
Y2h1~x!

xnh1
,

z5
Z

xnh1g2~x,y!
2

nxn21y2h1

g2~x,y!
2

nyh1~x!

xg2~x,y!

2
h2~x,y!2yh18~x!

g2~x,y!
2

h1~x!h18~x!

xnh1g2~x,y!

~17!

5
Z

xm1nh1h2
2

nxn212my2h1

h2

nyh1~x!

xm11h2

2
h2~x,y!

xmh2
2

yh18~x!

xmh2
2

h1~x!h18~x!

xm1nh1h2

and forh1(x)50 they are
01620
y5
Y

xnh1,
~18!

z5
Z

xm1nyPh1h2
2

nxn2m21y22ph1

h2
2

h2~x,y!

xmyph2
.

We therefore have four different possibilities for the funcit
f 1(x,y)5h0h1(x)1h1xny which are

~19!

with

h1~x!5a01a1x1a4x2

and three possibilities fot functionf 2(x,y,z)5h2(x,y)
1h2xmypz, which are

~20!

with

h2~x,y!5b01b1x1b2y1b4x21b5xy1b7y2.
When these functions are combined with the functionf 3 of the general ansatz~5!, four different ansatz are obtained,

~21!

~22!

~23!

~24!
6-4
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Note that the leading coefficients of the framed terms must be nonzero otherwise the mapFp cannot be inverted. Two othe
ansatz are remaining. They correspond to the case whereg2(x,y) is equal tomy and read as

~25!
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The last two ansatz are less interesting than the first
because the functionsf 1 are very constrained.

This procedure may be extended straightforward to
case of higher-order polynomial functionsf i ’s as well as for
higher-dimensional systems. It may appear that other an
could exist but no systematic way for generating them
been obtained so far. We conjecture that they are very r

C. Differential model estimation

When a model is attempted from a scalar time series, o
a phase portrait reconstructed using the derivative coo
nates can be obtained. The model is thus obtained by
mating the functionF(X,Y,Z) of a model of form~3!. Inor-
der to avoid numerous terms in the estimated mo
functionsF̃(X,Y,Z), its structure is selected to correspond
an ansatzAi . For the sake of clarity, let us start with
simple case.

The Rössler system@17#, one of the most simple system
that produce chaos, reads

u̇52v2w,

v̇5u1av, ~26!

ẇ5b2Cw1uw,

where (a,b,C)5(0.2,0.2,35.0) are the control paramete
When thev variable of the Ro¨ssler system is chosen as th
observable (x5v), the Rössler system belongs to ansatzA2
when the coordinate transformation (x,y,z)5(v,u,w) is
used. The ansatzA2 is thus reduced to

~27!

where

a15a, a251.0,

b1521.0, b3521.0, ~28!
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c05b, c352C, c851.0.

The other coefficients involved in ansatzA2 are set to zero.
This reduced ansatz will be designated as the ansatzA0 . It
will be used only for introducing the method. In this case, t
coordinate transformationF0 given in Eq.~7! reads

F05H X5x
Y5a1x1a2y
Z5~a1

21a2b1!x1a1a2y1a2b3z
~29!

and its inverse

F0
2155

x5X

y5
Y2a1X

a2

z5
Z2a2b1X2a1Y

a2b3
.

~30!

It is clear in this example that the leading coefficientsa2 and
b3 must be nonzero to define the inverse mapF0

21. Starting
from the reduced ans´atz ~27!, it is possible to determine the
exact model functionF0(X,Y,Z). The exact model function
is directly obtained by computing the derivative of the fun
tion f2(x,y,z) of Eq. ~7!, which is thus expressed versus th
ansatz coordinate (x,y,z),

F0~x,y,z!5a2b3c01a1~a1
212a2b1!x1a2~a1

21a2b1!y

1a2b3~a11c3!z1a2b3c8yz. ~31!

It remains to transform the original coordinates~x,y,z! by
using the inverted mapF0

21 to obtain the model function

F0~X,Y,Z!5a11a2X1a3X21a4Y

1a5XY1a6Y21a7Z1a8XZ1a9YZ,

~32!

where
6-5
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TABLE I. Coefficientsan of the model functionF expressed versus the original coefficients$ai ,bj ,ck%.
The exact valuesan,m and the estimated valuesãn and ãm are reported for ansatzA0 andA2 , respectively.
In the case of ansatzA2 , considered later, all of the coefficients not reported here are zero excepta3 , a28,
anda35 which are equal to 0.001.

n m Pn,m an an,m ãn for A0 ãm for A2

1 1 1 a2b3c0 20.20 20.1634 0.02
2 2 X 2a2b1c3 235.00 234.9880 235.336
3 3 X2 a1b1c8 20.20 20.2001 20.207
4 11 Y a2b12a1c3 6.00 5.9972 6.067
5 12 XY a1

2c8

a2
2b1c8

1.04 1.0397 1.064

6 18 Y2

2
a1c8

a2

20.20 20.2000 20.205

7 27 Z a11c3 234.80 234.7877 235.119
8 28 XZ

2
a1c8

a2

20.20 20.2000 20.206

9 32 YZ c8

a2

1.00 0.9996 1.023
ed
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¦

a15a2b3c0

a252a2b1c3

a35a1b1c8

a45a2b12a1c3

a55
a1

2c8

a2
2b1c8

a652
a1c8

a2

a75a11c3

a852
a1c8

a2

a95
c8

a2

. ~33!

The inverse of this mapw0 will allow us to derive the ansatz
model from the differential model.

The an’s are the coefficients which are to be estimat
when a differential model is attempted using the global m
eling technique described in the preceding section. In
present case, a differential model has been estimated by
ing a time series numerically recorded at a sampling r
equal to 100 Hz and constituted of 3000 data points. All
data points are taken from a time series of thev variable of
the Rössler system~26!. For each data point retained, th
derivatives have been estimated by using an interpola
polynomial. These interpolation polynomials are centered
each point by using the nearest neighbors. Derivatives
obtained afterward by taking analytically derivatives of the
polynomials. Then, a vector constituted by thev variable and
its three successive derivatives is retained regularly by 0
01620
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The system Ż5F̃0(X,Y,Z) is solved by using a SVD
algorithm. The estimated coefficientsãn’s are reported in
Table I.

The model obtained is quite close to the expected o
i.e., the estimated functionF̃0(X,Y,Z) is constituted of terms
that have estimated coefficientsãn very close to the exac
valuesan’s. In comparison to the general approach used
@3#, the ansatz approach allows us to reduce the numbe
terms on which the functionF0(X,Y,Z) is estimated. Con-
sequently, it allows us a so-calledstructure selectionfor the
differential model. This is the first interesting point of th
ansatz approach. Nevertheless, the plane projections o
differential model@Figs. 1~d!, 1~e!, and 1~f!# have nothing to
do with the plane projections of the original Ro¨ssler system
under the form of ansatzA0 @Figs. 1~a!, 1~b!, and 1~c!#. Such
a feature results from the fact that the derivative coordina
are coupled in a very different way than the ansatz variab
~x,y,z! are. However, since we assume an ansatz for the st
ture of the original system, an ansatz model can be obta
using the inverse mapw0

21.

D. Ansatz model

Let us continue with our simple example. Equation~33!
defines a mapw0 between the ansatz coefficients$ai ,bj ,ck%
and the estimated model coefficientsãn’s. If this map can be
inverted, the ansatz coefficients can be deduced and the
ferential model can be transformed into an ansatz model h
ing the same form as the ansatzA0 . Because only seven
coefficients are present in the ansatzA0 and nine coefficients
ãn in the estimated model functionF̃0(X,Y,Z), the problem
is not fully determined. Three ansatz coefficients,a2 , b1 ,
and c8 , are not analytically determined since they are on
involved in two linear independent equations. Neverthele
due to a small departure in numerical values of the estima
6-6
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FIG. 1. Plane projections of the attractor generated by the Ro¨ssler system in the form of ansatzA0 with (a,b,C)5(0.2,0.2,35.0). Plane
projections of the corresponding differential model and the ansatz model are also shown.
c

ffi
n
a

e
re
tz

n
In

y
atz
e
ons
the

ery

that
a

etes
nc-

fi-
model coefficientsãn’s, we have, in fact, six numerically
independent equations for these three coefficients which
be obtained. Also, the ansatz coefficientsb3 andc0 are only
involved in the single model coefficienta1 . Consequently,
the problem is undetermined for these two ansatz coe
cients. When the mapw0 is inverted using a Gauss-Newto
method with a cubic quadratic line search procedure
implemented in Matlab, the two ansatz coefficientsb3 andc0
may vary significantly from one differential model to th
other. The coefficients of the best differential model are
ported in Table II. An error up to 70% is found for the ansa
coefficientb3 . The errors will induce a significant scaling i
the variables without any other change in the dynamics.
01620
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deed, the value of the control parameterc0 only affects the
scale of the dynamics@20#. Thus, the attractor generated b
this ansatz model is topologically equivalent to the ans
system@Figs. 1~g!, 1~h!, and 1~i!#. This ansatz model has th
great advantage of presenting very similar plane projecti
like that for the ansatz system, i.e., the couplings between
dynamical variables involved in the ansatz model are v
similar to those present in the ansatz system~27!.

When more general ansatz are used, it may happen
two differential models are successfully obtained from
given time series. In this case, the structure selection del
spurious terms and adds missing ones but the model fu
tions are not sufficiently restricted to allow a clear identi
6-7
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cation of the best ansatz. This can be done when the di
ential model is transformed back into a model built with t
same variables like those involved in the ansatz. T
$ai ,bj ,ck% coefficients are thus expressed by inverting
mapw using a Gauss-Newton method with a cubic quadra
line search procedure as implemented in Matlab. If an inv

TABLE II. Estimated coefficients$ai ,bj ,ck% for the original
Rössler system and for the ansatz model after inverting the mapw0 .
A significant error is found for the coefficientsb3 andc0 since they
remain underdetermined. Nevertheless, these errors mainly a
the scaling of the variable but not the topology of the attractor.

a1 a2 b1 b3 c0 c3 c8

Exact 0.20 1.00 21.00 21.00 0.2 235.0 1.00
Estimated 0.20 1.0021.00 21.70 0.1 235.0 1.00
Relative error 0.0 0.0 0.0 70% 50% 0.0 0.0
01620
r-

e
e
c
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sion is possible for one of the two ansatz, one may concl
that the right ansatz is selected. It seems that there is a
low probability for having two differential models built from
different ansatz which may be transformed back. This ans
identification will be exemplified in the next section.

To summarize, the chain of computations is as follows
~1! Compute the coefficientsap

An from a given time series
for all ansatzAp of the ansatz library by using SVD an
differential models. For the next computation step, the val
ap

An for each ansatzAp are used.
~2! In order to check which ansatz is adequate, try

invert each mapwp for computing the ansatz coefficien
$ai ,bj ,ck%. Only ansatz which are appropriate to the tim
series used allow us to solve the inverse transformationwp .

The relationships between the different spaces~i.e., the
original phase space, the ansatz space, the differential
bedding, and the space associated with the differen
model! used in this paper are summarized in Fig. 2.

ct
one of the
o obtain
ifferential
pace
inates

rmation of

ce and the
FIG. 2. The original phase space is unknown. Only a scalar time series is recorded. Usually, the observable is considered to be
dynamical variables (u,v,w) from the original phase space. Starting with this observable, the derivative coordinates are computed t
a differential embedding. This is the single representation of the attractor that can be directly extracted from the data. Thus a d
model is attempted using the derivative coordinates~X,Y,Z!. The integration of the estimated differential model induces a phase s
spanned by the model derivative coordinates~X,Y,Z!. In this paper these coordinates are not distinguished from the derivative coord
directly computed from the experimental time series. In order to impose a structure selection on the model functionF(X,Y,Z), an ansatz is
assumed to match with the dynamics underlying the original dynamical variables (u,v,w). The coordinate transformationF: (x,y,z)
→(X,Y,Z) between the ansatz phase space and the phase space of the differential model must be invertible to allow the transfo
the differential model into a model in the ansatz form. But numerically, it is in fact the mapw: (an)→(ai ,bj ,ck) which is inverted. This
is possible until the leading coefficients are not equal to zero. When this is observed, one may expect that the ansatz phase spa
original phase space are very close.
6-8
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FIG. 3. Chaotic attractors gen
erated by differential models esti
mated with ansatzA1 and A2

when thev variable of the Ro¨ssler
system is the observable.
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III. NUMERICAL APPLICATIONS

A. Rössler system

Two quite different original systems are used as t
cases. First, we consider the Ro¨ssler system~26!. When the
observable is theu variable, the Ro¨ssler system does no
belong to any ansatz identified for second-order polynom
functions. Thus, following the procedure previously dev
oped, no invertible coordinate transformationF between an-
satz coordinates~x,y,z! and derivative coordinates~X5x, Y
5 ẋ, Z5 ẍ! can be obtained. The case of thew variable is a
little bit different. When the ansatz coordinates are (x,y,z)
5(w,v,u), the Rössler system may be rewritten in the for
of ansatz A4 . Thus, the corresponding model functio
F4(X,Y,Z) is constituted by 35 monomials. This mod
function is not reduced very much and no differential mo
has been obtained from thew variable of the Ro¨ssler system.
Obtaining a three-dimensional differential model from th
variable is a great challenge. So far, no three-dimensio
differential model has been obtained using a general poly
mial expansion@3#. It has been shown that such a featu
results from a lack of observability of the dynamics when
w variable is used@21#. Nevertheless, when a rational fun
tion is used with the right denominator selected with a fix
point identification, a three-dimensional differential mod
can be obtained@8#. In our case, it seems that the ansatzA4
is still too general to allow a successful differential mod
Further investigations are postponed for future works.

When v is the observable, the Ro¨ssler system may be
directly compared to the ansatzA2 for which all coefficients
are zero except those involved in ansatzA0 which is a sub-
part of ansatzA2 . A2 is therefore the right ansatz for descri
ing the Rössler system. In order to check whether o
method is able to select it, we try to obtain differential mo
els using ansatzA1 andA2 . Although differential models can
be obtained by using both ansatz~Fig. 3!, they are not of the
same quality. Indeed, the obtained model with the wro
ansatz@ansatzA1 , Fig. 4~a!# generates a chaotic attract
which is less developed than the one obtained with the
equate ansatz@ansatzA2 , Fig. 4~b!#. This is observed more
clearly when a first-return map to the Poincare´ section

P[$~Yn ,Zn!PR2uXn50,Ẋn,0% ~34!
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is computed. The three branches observed on the first-re
map of the exact differential model@Fig. 4~a!# are only re-
produced by the differential model associated with ans
A2 . Moreover, the differential model associated with ans
A1 is numerically unstable and only a metastable chao
behavior is observed before the trajectory escapes to infin
The differential model associated with ansatzA2 generates a
limit cycle after a transient regime. At first sight, one m
conclude that the dynamical behavior associated with
ansatz model may be very different from the one genera
by the original Ro¨ssler system. But the limit cycle corre
sponds to a periodic window which is very close to the ori
nal chaotic behavior in the bifurcation diagram of the Ro¨ssler
system. Such a departure may result from a slight chang
the control parameter values and may be quantified by
specting the symbolic sequence of the last created peri
orbit which is (202001) for the original Ro¨ssler system and
(20201) for the ansatz model. Whenb and C are kept un-
changed, it corresponds to ana value equal to 0.197 rathe
than 0.200. Such a slight departure for the control parame
~less than 1.5%! is a natural consequence of the applicati
of an estimation algorithm to data records that include
merical errors.

A definite selection of ansatzA2 is done by trying to
invert numerically the mapw. Only the mapw2 associated
with ansatzA2 can be inverted. Indeed, the mapw1 is not
invertible because the leading coefficients,a2 and b6 , in-
volved in ansatzA1 are equal to zero and, consequent
imply divisions by zero. As expected, only ansatzA2 is ad-
equate for modeling thev-induced Ro¨ssler attractor. The an
satz model reads

ẋ526.453410.0519x18.5377y,

ẏ50.457320.1163x10.1476y20.0001z, ~35!

ż520.441428.8897x218.0548y28.5462z

20.1392x212.7345xy20.1481xz17.0057y2

18.5377yz10.0000z2.

Extra terms are involved in this ansatz model. They res
from the extra terms involved in ansatzA2 . Nevertheless, the
chaotic attractor@Figs. 1~g!, 1~h!, and 1~i!# generated by the
6-9
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FIG. 4. First-return map for the exact differential model derived from the Ro¨ssler system and for the two differential models obtain
with the two different ansatz. Trajectory may be encoded according to the generating partition defined by the two critical pointsC1 andC2 .
Symbols 0, 1, and 2 are associated with the increasing, as well as the decreasing and increasing, branches, respectively. The ba
the A1 differential model is characterized by the absence of the third monotonic branch on the first-return map.
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ansatz model presents the same orientation in the s
~x,y,z! as the original Ro¨ssler attractor in the original phas
space spanned by (u,v,w). This can be checked by compa
ing Figs. 1~a!, 1~b!, and 1~c! with Figs. 1~g!, 1~h!, and 1~i!.
This means that the couplings between dynamical varia
~x,y,z! are very similar to the couplings between the origin
dynamical variables (u,v,w).

The quality of the ansatz model is confirmed by its fir
return map which compares favorably to the first-return m
computed for the original Ro¨ssler system@Fig. 4~a!#. The
original first-return map is equivalent to the one compu
for the differential model. As observed for the differenti
model, the first-return map associated with the ansatz m
is not very well visited. In fact, the ansatz model generate
limit cycle after a transient regime as observed for the d
ferential model. Therefore, the dynamics is preserved un
the transformation back to the phase spaceR3(x,y,z) and the
model now has the great advantage of presenting coupl
between the dynamical variables which are similar to th
between the original dynamical variables (u,v,w).

The ansatz model captures the right properties of the
namics. Although thex variable of the ansatz model evolve
within the same range as thev variable of the original
Rössler system, the other variables~y and z! of the ansatz
01620
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model are rescaled due to the departure observed for
estimated control parameterb. ~See Fig. 5.!

B. Lorenz system

The second test case is the Lorenz system@13# reading as

u̇52su1sv,

v̇5Ru2v2uw, ~36!

ẇ52bw1uv,

where (R,s,b)5(28.0,10.0,83 ) are the control parameters
Plane projections of the attractor generated by this sys
are displayed in Figs. 6~a!, 6~b!, and 6~c!. Since we know the
original equations, we can check that whenu is the observ-
able, the Lorenz system corresponds to ansatzA1 with
FIG. 5. Plane projections of the attractor generated by the ansatz model obtained from thev variable of the Ro¨ssler system by using
ansatzA2 . The scales of the variables~x,y,z! are different from those for the Ro¨ssler system due to the departure for thec0 value.
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FIG. 6. Plane projections of the attractor generated by the original Lorenz system, the differential model obtained using ansatzA1 , and
the ansatz model. The right symmetry properties are recovered for the ansatz model.
the
a152s, a25s,

b15R, b2521, b651, ~37!

c352b, c551.
01620
but not to ansatzA2 . In the former case, we have (x,y,z)
5(u,v,w).

Since the exact form of the Lorenz system is known,

exact model functionFL reads
6-11
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FIG. 7. First-return maps for the Lorenz case. The map associated with the ansatz Lorenz model exhibits slight departures fr
symmetry which induce a significant thickness.
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2Y
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X
1a26Z1a32

YZ

X
, ~38!

according to ansatzA1 . One may remark that this exac
model function is constituted by seven terms rather than
for the model functionF1 associated with ansatzA1 . There
is a cost to pay for these additional terms since they w
slightly affect the quality of the model as will be discuss
later.

Two differential models of the form~3! are obtained with
ansatzA1 and A2 , respectively. For instance, plane proje
tions of the chaotic attractor generated by the differen
model with ansatzA1 are displayed in Figs. 6~d!, 6~e!, and
6~f!. The model function is constituted here by 35 term
rather than 18 as obtained in@3#. The great advantage of th
model function is that it has a structure which is equival
to those of the exact model functionFL , while the estimated
model function by using a polynomial expansion has n
One may observe the large departure from the original att
tor displayed in Fig. 6. Indeed, the couplings between
derivative coordinates are clearly different from the co
plings between the original dynamical variables (u,v,w).
The symmetry of the differential model is an inversion sy
metry with respect to the origin of the differential embeddi
rather than a rotation@14#.

Only the differential model associated with the ansatzA1
can be transformed into an ansatz model of the form

ẋ521.799222.605x121.650y10.001x2,

ẏ520.96120.300x111.617y20.100x2

10.104xy20.160xz10.026y2,

ż5213.811115.518x23.494y22.552z10.373x2

21.445xy20.153xz13.748y220.006yz

20.001z2. ~39!
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Its numerical integration generates a chaotic attractor@Figs.
6~g!, 6~h!, and 6~i!# which may be favorably compared to th
original Lorenz attractor displayed in Figs. 6~a!, 6~b!, and
6~c!. Thex or y variable generates time series with symme
properties while thez variable is clearly invariant. This is an
important result since by using derivatives, delay coor
nates, or principal components, the reconstructed attra
always possesses an inversion symmetry whenu or v are
used as the observable while no symmetry is observed w
w is used as the observable@14#. The ansatz model, there
fore, has the great advantage of generating a phase po
that has a rotation symmetry as observed for the orig
phase portrait. Using an ansatz allows one to select the
equate model structure and to recover the exact symm
properties. One may remark that a rotation symmetry,
been recovered when starting from a single time series w
two time series are required by using usual approac
@18,19#.

The ansatz model~39! is not exactly equivariant. Indeed
extra terms required by the ansatzA1 as a0 , a7x2 or b4xy
and other even order monomials involvingx and y slightly
destroy the equivariance sinceẋ and ẏ can no longer be
changed into2 ẋ and 2 ẏ by applying (x,y,z)→(2x,
2y,z). These extra terms have low effects when the sys
is integrated as displayed in Figs. 6~g!, 6~h!, and 6~i!. The
thickness of a first-return map exhibits this slight depart
from symmetry~Fig. 7!. It could be avoided with a restricte
ansatz only including odd terms in the first two equatio
i.e., by deleting terms associated witha4 , b4 , b5 , and b7
from the ansatz before estimating the differential model.

When thev or w variable is the observable, no ansa
models can be obtained with the ansatz library introduced
Sec. II.

IV. CONCLUSION

Modeling dynamical systems starting from a scalar tim
series is an important subject of research. Most of the mo
obtained involve polynomial expansions with a large num
of coefficients and the structure of the model equations c
6-12
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not be used to understand the couplings between the diffe
dynamical variables required for a complete description
the state of the system studied. With the aid of an ans
library, it is possible to reduce the number of terms involv
in the model function when its structure is adequate. Mo
over, when the original system presents a symmetry, the
ferential model cannot be characterized by the same sym
try except if the symmetry of the original system is
inversion. We have shown that using an ansatz library m
allow us to obtain an ansatz model that has variables wh
present couplings very similar to those observed for
original system. For instance, the right symmetry proper
01620
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of the Lorenz system have been recovered starting from
scalar time series. The first attempts to adopt this method
noisy time series has been postponed for future research
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APPENDIX: COMPUTATION OF MAP wp FOR ANSATZ Ap

In this appendix the code used inMATHEMATICA for computing the mapw between the ansatz coefficientan’s and the
model coefficients$ai ,bj ,ck% is given for ansatzA0 . Other cases can be easily computed from this code.

General procedure to generate the functionsf i

MatricesAA, BB, andCCcorrespond to the ansatz functionsf 1 , f 2 , and f 3 , respectively. The matrix indices are shifted b
1. For instance, in matrixAA, the indices 2 and 3 correspond to coefficientsa1 anda2 , respectively,

Q5$1,x@ t#,y@ t#,z@ t#,x@ t#x@ t#,x@ t#y@ t#,x@ t#z@ t#,y@ t#y@ t#,y@ t#z@ t#,z@ t#z@ t#%,

AA5Flatten@Table@$ai%,$ i ,0,Length@Q#21%#],

BB5Flatten@Table@$bi%,$ i ,0,Length@Q#21%#],

BB5Flatten@Table@$bi%,$ i ,0,Length@Q#21%#],

CC5Flatten@Table@$ci%,$ i ,0,Length@Q#21%#],

T5AA Q;T5T@@$2,3%##; f 15Apply@Plus,T],

T5BB Q;T5T@@$2,4%##; f 25Apply@Plus,T],

T5CC Q;T5T@@$1,4,9%##; f 35Apply@Plus,T],

a1 x@ t#1a2 y@ t#,

b1 x@ t#1b3 z@ t#,

c01c3 z@ t#1c8 y@ t#z@ t#.

Computation of Ż

replxyz 5$x@ t#→x,y@ t#→y,z@ t#→z%,

g15x@ t#,

g25Simplify@~]x@ t#g1! f 11~]y@ t#g1! f 21~]z@ t#g1! f 3#,

g35Simplify@~]x@ t#g2! f 11~]y@ t#g2! f 21~]z@ t#g2! f 3#,

Zdot5Simplify@~]x@ t#g3! f 11~]y@ t#g3! f 21~]z@ t#g3! f 3#,

g15g1 /.replxyz, g25g2 /.replxyz , g35g3 /.replxyz ;

Zdot5Zdot/.replxyz ,

S5Flatten@Solve@$g155X,g255Y,g355Z%,$x,y,z%#],
6-13
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Zdot5ExpandAll @Zdot/S#.

Extraction of the monomial list from the expression for Ż

repl5Flatten@Table@$ai→1,bi→1,ci→1%,$ i ,0,Length@Q#%#];

QQ5ExpandAll@Simplify@~Zdot/.repl))]];

QQQ5Table@0,$ i ,1,Length@QQ#%#;L5QQ:

For@ j 51,j <Length@QQ#, j 11,

If @NumberQ@QQ@@ j ###55False,

For@k51,k<Length@QQ@@ j ###,k11,

If @NumberQ@QQ@@ j ,k###55True,QQQ@@ j ##15QQ@@ j ,k###;

];

QQQ@@ j ##15QQ@@ j ##;

];

L@@ j ##/5QQQ@@ j ##;

L5Table@L@@ i ##,$ i ,1,Length@L#%],

$1,X,X2,Y,X,Y,Y2,Z,X,Z,Y Z%.

Extraction of the coefficientsan from Ż using the monomial list

Coeff5Table@0,$ i ,1,Length@L#%#;

pp5Length@L#;

For@ j 5Length@L#, j .0,j 22,

If @NumberQ@L@ j ##/.repl#55False,

For@k51,k<Length@LZ#,k11,

CO5Coefficient@LZ@@k##,L@@ j ###;

If @NumberQ[CO/.repl#55True,Coeff@@ j ##15CO;]

];

j j 5 j ;

];

];
016206-14
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Coeff@@ j j ##5ExpandAll@Simplify@Apply@Plus,LZ] 2Apply@Plus,L Coeff]]].

Listing of the transformation w

For@k51,k<Length@L#,k11,Print@a2 ,k,5Coeff@@k###;

a215a2b3c0 ,

a2252a2b1c3 ,

a2252a2b1c3 ,

a235a1b1c8 ,

a245a2b12a1c3 ,

a255
a1

2c8

a2
2b1c8 ,

a2652
a1c8

a2
,

a275a11c3 ,

a2852
a1c8

a2
,

a295
c8

a2
.
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in

ro
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