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Abstract

Obtaining a global model from thevariable of the Rdssler system is considered to be difficult because of its spiky structure.
In this Letter, a 3D global model from thevariable is derived in a space spanned by the state variable of the time-series itself
and generic functions of the other two state variables. We term this space the Ansatz Space. The procedure consists of two steps
First, models built in the derivative coordinates are obtained. Second, we use the analytical form of ¢heetvapen systems
in the original state space and in the differential space to find a class of models in the Ansatz Space. We find eight models in
this class which we show to be dynamically equivalent to the original Réssler system. The important attribute of this approach
is that we do not need to use any prior knowledge of the dynamical system other than the measured time series data in order to
obtain global models from a single time series.
0 2003 Elsevier B.V. All rights reserved.

1. Introduction delay or derivative coordinates. Principal components
can also be used for reconstruction as introduced by

The topic of this Letter is how to obtain a set of dif- Broomhead :_amd K_ing [5]. Gibson et al. [‘?] showed
ferential equations for the phase portrait reconstructed thgt t_he relationships betwgen delays_, derivatives and
from a single time series. In particular, we are inter- Principal components consist of rotations and rescal-
ested in obtaining a set of differential equations con- ings under certam conditions. These coordinate .sets
taining the minimal number of terms necessary to de- are therefore equivalentalthough a set may sometimes
scribe the underlying dynamics. The pioneering works be superior to another for numer_lcal reasons. Here we
by Takens [1], Packard et al. [2], and Sauer et al. US€ embeddings as a tool to derive a model in a space
[3] provide the theoretical background for reconstruct- SPanned by the state variable of the time-series itself
ing the phase portrait from recorded scalar time se- and generic functions of the other two state variables
fies. Crutchfield and McNamara [4] used such recon- rather than in the embedding space. This is done using

structed phase space to find global models built on 1€ So-called Ansatz Library [7]. We call the recon-
structed space Ansatz Space.

In theory, any time series generated by a dynamical
" Corresponding author. system could be used for modeling. In practice, it
E-mail address: clainscsek@ucsd.edu (C. Lainscsek). has been observed that even noise-free, infinite time
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series may not contain enough information to obtain which we fix the number of state variables and the or-
all the dynamical properties from a scalar time series der of nonlinearity of polynomials. We show how this
[8-10]. More recently, an observability index has Ansatz Library can be used to preselect candidate dif-
been introduced to quantify the “observability” of the ferential models estimated from time series. The Let-
dynamics from a scalar time series [11]. A small ter details the computational strategy used to select
index indicates small information content and a great plausible differential models. To circumvent estima-
difficulty in obtaining a global model. Under this tion problems due to the spiky nature of theariable
index, the observability of the Rdssler system from its of the Rdssler system, we propose an approach where
three variables is ordered as x » z, where> means we use the stability of the estimated model coefficients
“provides a better observability of the underlying over arange of windows as the criteria to select candi-
dynamics than”. According to this index, the- date models. Since the Ansatz Library lists all possible
variable is the easiest one from which one can obtain maps between the polynomial dynamical models and
a model while thez-variable is the most difficult.  the corresponding differential models, an inversion of
There exist only a few published attempts to obtain a these maps yields a set of equivalent but algebraically
model from thez-variable of the Rossler system. Such simpler models. Another novel computational method
a non-equivalence between the dynamical variables employed in this Letter is an iterative genetic algo-
is valid for any modeling technique which can be rithm combined with Newton’s method which is used
divided in two main classes. In the first class the to invertthe maps between the differential models and
dimension of the phase space is fixed [12,13]. In this the corresponding ansatz models. Using such a pro-
case, the number of terms, the number of monomials in cedure, we identify eight dynamically equivalent 3D
a polynomial expansion, is varied. Usually, increasing global models that capture the dynamics of the Rossler
the number of terms decreases the quality of the system observed from thevariable. Of those eight,
model and structure selection techniques must bethree models are minimum term models containing
used. The second class uses discrete-time modelsonly seven terms and the other five contain eight or
with cylindrical basis functions [14] which are less nine terms each. We show that these models are equiv-
sensitive to an increase of number of terms. These alent under a coordinate transformation which is iden-
“strong approximation” techniques have advantages tified.
and disadvantages for particular data sets. Using a The Letter is organized as follows. In Section 2
global modeling technique of the first type, a 4D we describe how models in the differential space
model with a quite large number of coefficients [11] spanned by the derivative coordinates using an Ansatz
was obtained. The single 3D model was found in Library are obtained. In Section 3, we describe how
[15], where the authors had to use an ad hoc structurethe best differential models are transformed into the
selection by identifying the fixed point coordinates. space spanned by thevariable with which we and
This approach is not general and must be tailored linear functions of the other two state variables, using
to the time series at hand. The resulting model [15] an iterative genetic algorithm. Section 4 presents
contains a large number of spurious terms which, the conclusion. For the remainder of the Letter, we
besides making the model unnecessarily complex, will designate the variables of the Rdssler system as
induces numerical instabilities when integrated. (u1, u2,u3) rather than(x, y, z). The Letter focuses
This Letter presents a different approach to struc- on the theoretical aspects of model reconstruction
ture selection. We describe a step-by-step process forwhen the time series is free of noise contamination.
obtaining 3D global models in the Ansatz Space rather Extensions of this method to noisy data are necessary
than in the embedding space from time series otthe for dealing with real world problems and will be
variable of the Rossler system using an Ansatz Library published separately.
based structure selection procedure [7]. The Ansatz
Library, first introduced in [7], consists of the set of all
analytically derivable maps between sets of ordinary
differential equations of polynomial form and differ- In this section we provide background to explain
ential models expressed in terms of Lie derivatives, for how we use an Ansatz Library to obtain models in

2. Modelingin the differential space
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Fig. 1. Relationship between the ansdiz the differential model
D;, the estimated differential modél; and the ansatz modg¥; .

the differential space spanned by the derivative coor-
dinates. Fig. 1 illustrates the relationship between the
ansatzA;, the differential model®;, and the ansatz
models M; that we use in our model identification
procedure.

The Ansatz Space is related to the original state
space through generic transformations of the unob-
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and recursively for the higher-order derivatives
L-}h(u) = Lf(L}_lh(u)). Using successive Lie de-
rivatives we can build a model from the scalar signal
as follows:

X =s=hu),
Y=L¢h(u),
Z=L5h). (3)

The phase portrait can thus be reconstructed in the dif-
ferential spacé&?’(x, Y, Z). With these coordinates, a
model from the recorded scalar signal can be obtained
via a global modeling procedure. A general form for
the model is given by

X=v,
Y =2,
Na
Z=F(X.Y.Z,oy)=Y Py, )
n=1

whereq,, are the coefficients of the model functidh

to be estimated an@, are the monomials’y/ zk
[12]. The indices(, j, k) for monomials may also
be negative yielding a model with rational monomi-

served state variables. The observed state variable isals. System (4) is called theifferential model, and

preserved [16].
2.1. Differential model

A general form of the differential model in terms
of monomials is described here. For the sake of
clarity, we limit the presentation to the case of 3D

systems but the technique can be similarly extended

to higher-dimensional systems. Let us consider a time-
continuous dynamical system RP (i1, u2, u3):

u1= fi(u),
up = fo(u),
iz = fa(u), (1)

and lets = h(u) be an observed scalar signal, where
h :R3 — R is a smooth function. The Lie derivative
L rh(u) of the functioni(u) with respect tof (u) is
defined as

oh(u)
duy

3
Lyh@) = fi(u) (2)

k=1

its parameters can be obtained by solving an over-
determined system a¥ equations withW, unknown
coefficientsa, (N > N,) using a least-square type
method.N is the number of points retained for coeffi-
cient estimation, as discussed later.

2.2. AnsatzLibrary

The standard approach to choose the set of mono-
mials P, in (4) is to truncate a Taylor expansion at
a given order. Such approach frequently introduces
spurious terms in the models which decreases their
quality. To circumvent this problem, various structure
selections techniques have been proposed. As shown
in [13], such structure selection algorithms can be use-
ful in reducing the complexity of the model and in
increasing its quality. Error Reduction Ratio (ERR)
is an example of a structure selection method which
has been implemented in [17] but the drawback of the
technique is that it must use a global model as a start-
ing point. Consequently, if it is not possible to obtain



412

a global model with a dynamics quite close to the in-
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of the /th differential model of the library) in terms

vestigated dynamics, this structure selection technique of the coefficientda;, b;, ¢t} from Eq. (5). Through

cannot be applied.

this process we find which coefficients;, b;, cx) in

The structure selection strategy presented here isEqg. (5) must be zero for the individual differential

different from earlier structure selection attempts.
Rather than to modify or build the structure of an
obtained model, we apply a structure selection to
identify the relevant coefficients among all the terms
in the differential modeld; belonging to the Ansatz
Library made of all putative models for a given order
of nonlinearity and a given dimension. This is done
using the stability of the coefficients over windows.
Then, the coefficients are estimated from a given time
series.

The first library made of six ansaty; (I =1, 2, 3,
18, 19, 21) for defining the structure of 3D differential
models was built in Ref. [7]. An extended Ansatz
Library of systems of ODEs in a three-dimensional
phase space was built in [18] for the case when
the right-hand sides can be written as polynomials
containing up to second order nonlinearities. We
briefly detail how this library was built.

A 3D system of ODEs with the right-hand sides
containing polynomials with up to second-order non-
linearities can be written in a general form as

X =ag+aix +azxy +asz
+ a4x2 +asxy + aexz
+ a7y2 +agyz + agzz,
y =bo+ bix + b2y + b3z
+ bax? 4 bsxy + bexz
+ b7y2 + bgyz + boz?,
Z=co+c1x +c2y +caz
+ 64x2 + c5xy + cexz
(5)

To derive the Ansatz Libraries in [18] we restrict
the terms of the differential model to the set of all
monomials of the formx?Y/Z¥, wherei, j and k

are integers, positive or negative. Since the order of
the differential equations is interchangeable. We fix
the x-variable as the observable in all cases, i.e.,
s = x, to obtain a set of non-redundant libraries.
We then find which model structures would allow
us to invert the mapg; to express the coefficients
{1} oOf the differential modelsD; (I is the index

+ C7y2 + cgyz + 6922.

model structures. In the end we obtain a set of ODEs
containing a limited number of terms for which the
coefficients{a;, bi, ¢;} are nonzero. Note, that we do
not use data to build the library.

The library for the case of second order non-
linearities consists of 26 such model structures listed
in Table 1. In Table 2, the monomials involved in
the differential modelsD; corresponding to the 26
ansatzA; reported in Table 1 are listed. Note, that
the equations in this library are also referred to as
jerky dynamics in the literature. Attempts to build
a complete jerky dynamics library were presented
in [19], but that library was able to capture only a part
of our list.

The objective of our procedure is to select the
best differential modeD; which captures accurately
the dynamics under investigation. In order to do
this, we start with the structure resulting from the
concatenation of the 26 differential moddlB;}2%;
which reads as follows:

X=Y,
Y =2,

. 1 1 1
Z=011+012F +O[3F +a4ﬁ

1 2 3
+a5§ +oaeX +a7X +agX

+ X * + a10X° + a11X°

1 X
+a12X "+ a13X® + 0114? + a157

+ 2+ X3+ Xt
d16— dN7— o18—
16Y 17Y 18Y
x5 X6
+ 19— + a20— +a21Y
19Y OlZOY 21

Y

+ o245

+a23 X7

Tozzyg T enys

Y
+ @25+ + @26XY + ap7X?Y

+ @28X3Y + 20X ?Y + az30X°Y
Y2

+ 31 XY +az¥? + 3357
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Table 1

Ansatz Library for systems of ODEs with up to quadratic nonlinearities. Each line represents one general system of ODEs which can be
represented as a differential model in the form of Eq. (4). An 'x" in the table indicates that the corresponding coefficigntc; ) from the

general system Eq. (5) is present in the ansatz-model. The coefficients with blank entries are zero. Ansatz 1, 2, 3, 19, 20, and 21 were presented
previously in [7]

Ansatz ag ay ap a3z a4 as ag ay ag ag by b1 by bz by bs bg by bg bg cg c1 ¢ ¢3 c4 ¢5 cg €7 €8 €9
Al X X X X X X X X X X X X X X X X X X X X X
A2 X X X X X X X X X X X X X X X X X X X X X
A3 X X X X X X X X X X X X X X X X X X
A4 X X X X X X X X X X X X X X X
As X X X X X X X X X X X X
A6 X X X X X X X X X X X X
A7 X X X X X X X X X X X X
Ag X X X X X X X X X X
Ag X X X X X X X X X X
A1lp X X X X X X X X X
A1 X X X X X X X X X
A1 X X X X X X X X X
A1z X X X X X X X X X
Alg X X X X X X X X
A1z X X X X X X X X
A X X X X X X X X
A17 X X X X X X
A1g X X X X X X
Alg X X X X X X X X X X X X X X X X X X X X X
A20 X X X X X X X X X X X X X X X X X X X X X
A21 X X X X X X X X X X X X X X X X X X
Ao X X X X X X X X X X X X
Az X X X X X X X X X X X X
Azg X X X X X X X X X X X X
Az X X X X X X X X X X X X
Ag X X X X X X X X X X X X
y? y? y? x3z YZ YZ
+0l34F +Ol35ﬁ +01367 +0563T +oaeaY Z +0165F +0l66F
2 2y2 3y2 YZ
+ 37X Y+ a3gX“Y“ + 039X °Y + 67— +aesX Y Z + a6oX?Y Z + a70Y%Z
4y2 5, Y° 2 2 2
+ og0X7Y + 0a1Y " + aq0— Y<z Y<Z Y<Z 2
X4 +an +a72 +a73 +a74Z
X3 X2 X
Y3 ys Y3 72 72 72
043 T daas T aas s +a75— + a76— + 77— (6)
X X Y
3 23 4 L . .
+ 246 XY™ + a47X°Y™ + asgY Because this differential model only contains terms
y4 v4 y4 leading to a 3D ansatz with up to quadratic nonlin-
+ a49ﬁ + asoF + a517 + as52Z earities, the presence of spurious terms in this model
7 7 7 structure is already greatly reduced. Those remaining
+ 0535 + 54— + A55— will be eliminated as discussed in the subsequent part
X X X of this Letter using the example of the Réssler system
+ 56X Z + a57X%7Z + asgX3Z investigated from thez variable. Further note that the
5 Ansatz Library approach does not require the knowl-
X7 X<Z

+a5oX*Z + aeoz + Al — + a2 edge of the order of the nonlinearity in the system in-
Y Y Y vestigated. If the order is not known, one can use a li-
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brary built with an order of nonlinearities higher than
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over theN,, windows of the time series. A very sim-

the one expected for the system, since our procedureilar procedure for removing spurious terms was also

can eliminate spurious model terms that we might ob-
tain. A library for the case of polynomials containing
up to third order nonlinearities was derived in [18], and
libraries for 4th and higher order nonlinearities can be
derived analogously. For the sake of simplicity in il-
lustrating our method we use only the library obtained

used by Bezruchko et al. [21]. Here, we use in addi-
tion a thresholds; under which centers are retained
for estimating the values of the selected coefficients.
Such a new modeling parameter is very useful for
spiky time series as it will be shown below. In fact,
the threshold helps to improve the coefficient estima-

for the second order nonlinearities in the present work tion (once they are selected) in retaining points not too
but the extension to libraries that capture higher order far from the fixed point, that is for which the deriva-
nonlinearities is straightforward. tives are well estimated. Moreover, since some mono-

Note that involving higher order of nonlinearities mials are rational withX or ¥ as denominator, data
would increase the number of candidate terms when points for whichX = uz andY = X are too close to
the concatenation of all possible models is used as de-zero are not retained for estimating the model in order
tailed here. A more favorable approach may be to use to avoid numerical errors. Thus, centers are retained
candidate modeld; separately to reduce the num- overa domain of the phase space where the derivatives
ber of involved terms as done in Ref. [7]. Neverthe- are quite well estimated: not too close to zero where
less, note that since the terms used here are fractional they are very sensitive to numerical errors and not too
the number of situations which can be captured for a far from the fixed points where the distances between
given order of nonlinearity is significantly increased two points is quite large and, consequently, where the
compared to polynomial expansion as used in [12]. derivatives are not sufficiently accurate. This is rather
For higher dimensions the numerical estimation of the important for spiky time series which, by definition,
derivatives may also become problematic. present large amplitude oscillations during which the
dynamics is significantly faster than in the neighbor-
hood of the fixed point. This means that using points
retained in a limited domain of the phase space is suffi-

Starting from the scalar signal the coefficients  cientto capture the whole dynamics. In fact, using dif-
{a,} of the differential model (6) are estimated from ferentdata pointwindows without any threshold is suf-
segments of the recorded data by using a singular ficient for selecting the relevant coefficients but not for
value decomposition [20]. The time series is split into estimating them with accuracy. The use of this tech-
N, windows of N/N,, points each. The coefficients nique is illustrated in the next subsection in the case of
{a,} are robust, i.e., remain more or less constant theug-variable of the Réssler system which is consid-
over different windows of the recorded time series, ered as a rather difficult test case in the literature.
when they are relevant to capture the underlying
dynamics. Thus we use the stability of,’'s over
different windows to identify the appropriate structure
for the differential modelD; which best matches the
underlying dynamics. Here we attempt to estimate a global model from

To measure stability of coefficients we use the theus variable of the Rdssler system [22] given by
significance

2.3. Sdlecting the best differential model

2.4. Differential model from the u3 variable of the
Rossler system

. U1=—up — us,
5, = @l

o (an)
wheregq,, designates theth coefficient of the differen-
tial model (6) estimated over a window(c,,) desig-
nates the standard deviation, gin@, ) designates the
mean value of the coefficients over thg, windows.
The nth coefficient is stable iy, remains constant

(M

2 =u1+aup,
(8)

using the structure selection technique we described.
The time seriesi3 is generated by integrating these
equations with the control paramete(s, b,C) =
(0.398 2.0, —4.0). The Rossler system thus generates

uz=>b+Cuz+uius,
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(b) First-return map

Fig. 2. Chaotic attractor generated by the Rossler system for
(a,b,C) =(0.398 2.0, —4.0). The Poincaré section is computed us-

ing the half-planatq = —(C 4 v/C2 + 4ab)/2 with i1 > 0. A uni-
modal first-return map with a single critical point C characterizes
its topology. The period-7 orbit which is the last created is also re-
ported.

a chaotic attractor (Fig. 2(a)) which is characterized
by a unimodal first-return map with a differentiable
maximum (Fig. 2(b)). A refined characterization is
given by the kneading sequence, i.e., the symbolic
sequence of the last created periodic orbit, which is
(1011110) for these control parameter values when
the lowest periogs orbits (p < 8) are considered.

It is a period-7 orbit which has 5 points in the
decreasing branch of the first-return map and 2 in
the increasing branch (Fig. 2(b)). The template of

this Rossler attractor is a horseshoe template with a

negative half-turn in the odd branch [23].
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The spiky nature of thez-variable presents a very
challenging test case for a global modeling technique.
Successful global models have been obtained for
the cases when the recorded scalar signal is either
s = u1 or s = up, but not in the case when the
recorded scalar signal corresponds togevariable.

In the latter case, no successful 3D model has been
obtained without a strong structure selection that was
specifically tailored to the time series [15] as we
discussed above.

In order to obtain a differential model under the
form (6), successive derivatives of the time serigs
are required. A point of the time series,= u3(idt)
wheredt is the time step at which the time series is
recorded is associated with its successive derivatives,
thus (Xi = u3(iét), ¥Y; = X,‘, Zi = )‘éi, Zi = Xl)
provides a so-calledenter. The first derivatives at the
ith point of the time series are estimated according to

. MM -1)
=T
M om-1
x Z mZ m3(Si+n —Si_n) — n3(si+m —siim)
m=2n=1 2mndt (m2 — n?) )

9)
where 21 is the number of points to take into
account. In this work, we us® = 3. The second and
third derivatives are then computed from the first and
second derivatives, respectively.

The stability of the estimated coefficie®t is com-
puted as previously defined. Note that the concate-
nation of the ansatz corresponding to quadratic non-
linearities and 3D systems is used here, which is the
model structure (6). The significance is computed us-
ing 50 windows of 3000 data points each with a win-
dow shift of 750 points (Fig. 3(a)). Twelve coefficients
are clearly more stable than the others. Note that our
structure selection technique is sufficiently efficient
to identify the relevant coefficients even from a very
limited knowledge of the phase portrait. This is illus-
trated in the example where the Réssler system with
C = —5.9 generates a period-1 limit cycle (Fig. 3(b)).
The second step of the procedure may then be applied
as described below and similar results are obtained.
According to Table 2, indices of the stable coefficients
are

{1,6,7,21, 25, 26, 35, 36, 44, 52, 55, 67).
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Fig. 3. Logarithm of the significance of the 77 coefficiefifsof the
model (6) with indices as reported in Table 2. They are computed
from a chaotic regime (a) and a period-1 limit cycle (b). In both
cases, the same twelve coefficients are easily identified.

They refer to the monomials

Y2 y2 ys
b ﬁv 79 ﬁv

Z YZ
Zv < <~ [
X X }
(10)
respectively (Table 2). Only modelBP19 and Dg

contain all these terms.
The estimated differential model from thes-

Y
{1, X, X2 Y, —, XY
X
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ture:
X=Y,
Y =2,

7= a1 +agX + 0[7X2 + a21Y
+ d + XY + re
25— (04 o35—5
257 T @26 3573
Y2 Y3

+ 05367 + 0l44ﬁ

7 VA YZ

+ as2 +a55X + a7 X
It may be easily confirmed that this structure has in
fact the structure of the differential system analytically
computed from theus-variable. Rather than using
differential model D1g or Dyg for estimating the
numerical values of coefficienta,, we prefer to
use the twelve terms form (11): such a small set of
coefficients will be helpful to ensure a better accuracy
on the estimated coefficients,. In order to do so,
10000 centers from the time series are randomly
chosen under a threshaid By varying the threshold
value s;, a plateau on which all the coefficients are
fairly constant have been identified, that is fgre
[0.4; 1.0]. The mean values of the coefficients are
estimated over 13 data sets corresponding different
thresholds,; obtained by increasing over the plateau
[0.4;1.0] using a step equal to 0.05. The values
of the twelve coefficients are reported in Table 3
where the theoretical valuas, of coefficients are
also listed for comparison. The estimated coefficients
have values very close to the theoretical ones. Note
that the plateau corresponds to the domain of the
usz-time series where all the maxima are excluded
as centers used for estimating the model. This is
equivalent to exclude the center for which derivatives
are close to zero and not accurately estimated since
the dynamics is too fast with respect to the sampling
time. More accurate derivatives would require a higher
sampling rate but in that case, the derivatives at centers
located at small values of; would be damaged by
oversampling.

To validate the twelve terms differential model
(12), it is integrated. It thus generates a period-7 limit
cycle shown in Fig. 4(a). This does not mean that
our estimated model is incorrect because a periodic
window can often occur close to a chaotic attractor

(11)

variable of the Rdssler system has therefore the struc-when one control parameter is varied slightly. In our
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Table 2

Monomials of the differential models corresponding to the 26 ansatz reported in Table 1. An ‘X’ indicates that the monomial is present in the
differential model. The gray boxes in the first row indicate the monoraiakhat are selected by our structure selection technique applied to

the time series of the = u3 component of the Rdssler system. The gray boxes in the table highlight the two differential ibggdeisd D>g

that contain all the relevant monomials

Ansatz

Monomial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 119 20 21 22 23 24 25 26
1 1 X X X X X X X X X X X X X
2 1/x4 X
3 1/X3 X X
4 1/X2 X X
5 /X X X X
6 X X X X X X X X X X X X X X X X X X X
7 X2 X X X X X X X X X X X X X X X X X X X X X
8 x3 X X X X X X X X X X X X X X X X X X X
9 x4 X X X X X X X X X X X X X X X
10 x5 X X X
11 X6 X X
12 X7 X X
13 x8 X
14 Yy X
15 X/Y X
16  x2/y X X
17 X3/Y X X
18 x4y X X
19 x5y X
20 x8v X
21 Y X X X X X X X X X X X X X X X X X X X X X
22 y/x4 X
23 y/x8 X X
24 y/x? X X
25 Y/X X X X X X X X X X X X X X
26 XY X X X X X X X X X X X X X X X X X X X X X X X
27 X2y X X X X X X X X X X X X X X X X X X X X X X
28 x3Y  x x X
29 XY  x x
30 X5y X X
31 xby X
32 Y2 X X X X X X X X X X X X X X X X X X
33 yZ/x4 X
34 y?%/x3 X X
35 Y2/x2 X X X X X X
36 Y2/X X X X X X X X X X X X X X X
37 X2  x x X X
38 X2y?2 X X
39 x3y2 X X
40  x*4y? X
41 Y3 X X X
42 y3;x4 X
43 y3/x3 X X
44 y3,x2 X X X X X X X
45 ¥Y3/X X X
46 Xy3  x x

(continued on next page)
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Table 2 ¢ontinued)

Ansatz

Monomial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 119 20 21 22 23 24 25 26
47  x2y3 X
48 r4 X
49  y4/x*4 X
50 y4/x3 X
51 Y4X x
52 V4 X X X X X X X X X X X X X X X X X X X X X
53  z/x3 X
54  Z/X? X X
55 Z/X X X X X X X X
56 XZ X X X X X X X X X X X X X X X X X X X X X X X X
57 X2Z  x x X
58 x3z X X
59 X%z X
60 zZ/Y X X X
61 XZ/Y X X X X
62 XZZ/Y X X X X
63 X3Z/Y X X X
64 YZ X X X X
65 YZ/X3 X
66 YZ/X? X X
67 YZ/X X X X X X X X X X X X X X X X X X
68 XYZ X X
69 Xx2rz X
70 Y2z X
71 v2z/X%3 X
72 Y27/X%? X
73 Y2Z/X X
74 z2 X
75 z2/x? X
76 ZZ/X X X
77 7%y X X X X X X
Table 3

Estimated coefficients of the differential model (11) made of the twelve more stable coefficients. The coefficients are averaged over 13 data
sets corresponding to different values of the threshpld [0.4; 1.0] sampled at 0.05 increment. Theoretical valugsare also reported for
comparison

n 1 6 7 21 25 26 35 36 44 52 55 67

ap 20 -4.0 0398 -10 0796 -10 40 -0398 -20 0398 20 30
a, 19982 —-3.9901 Q03906 —0.9986 07944 -—-1.0043 39957 —-0.3900 —-1.9958 03959 —-1.9976 29965

case, a periodic cycle is due to slight departures same symbolic sequence than the kneading sequence
between the estimated coefficients and the analytical previously identified on the original chaotic attractor
ones (see Table 3). To investigate whether the limit (Fig. 2(b)). Moreover, it can be shown that the attractor
cycle corresponds to a periodic window close to in Fig. 4(b) is characterized by the same template as
the original chaotic attractor, we slightly increase the original Réssler system. The obtained model is
the first paramete&; from 1.9982 to 1999, which therefore very close to the original dynamics, but it is
results in a chaotic attractor shown in Fig. 4(b). builtin the phase space spanned by the Lie derivatives
From its first-return map (Fig. 4(c)), the period-7 R3(X, Y, Z) rather than in the original phase space
limit cycle is encoded by (1011110), which is the R3(us, u1, u2).



C. Lainscsek et al. / Physics Letters A 314 (2003) 409427

50 -

50 -

-1 00 L L L L L
0.0 1.0 2.0 3.0 4.0 5.0 6.0

X
(a) Model witha; = 1.9982

10.0

50

=50

~10.0 L L L L n
0.0 1.0 2.0 3.0 4.0 5.0 6.0

(b) Model with@1 = 1.999

6.5

55 F

45 F

n+l 35 F

25 ¢

15 F

0.5

05 15 25 35 45 55 6.5
X

n
(c) First-return map fo&1 = 1.999

Fig. 4. Phase portraits of the differential model (11) and the
differential model for which coefficieni is slightly modified. The

first-return map of the latter is also shown. The period-7 limit cycle
(symbols ©” in the first-return map represent the location of the

seven periodic point of this orbit) is encoded by the same symbolic
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The use of the Ansatz Library allows for significant
improvement in the use of the coefficient stability
for structure selection and for estimating their values.
This improvement is obvious when the structure of the
differential model to estimate corresponds to one in
the library.

When this is not the case, some transformation on
the time series may be applied to handle the situation.
This is illustrated briefly in Appendix B for the;-
variable of the Rossler system. In this example, the
transformation is a simple shift which renders this time
series part of the Ansatz Library. However, when such
a transformation cannot be found, standard modeling
techniques remain applicable as in the case-aind
z-variable of the Lorenz system.

3. Estimating a model in the Ansatz Space

Our next objective is to obtain a model in the
space]R3(x, v, z) associated with the selected differ-
ential model (11). At this stage the transformation
¢; between the selected differential model (11), that
is part of the two general differential modeBi9
and Dyp, and the ansata; (i =19, 20) is inverted.

In order to do this, only the monomials correspond-
ing to the twelve significant coefficients in the mod-
els D; are taken into account. Using a genetic algo-
rithm based search described in Appendix A, 14 sets
of coefficients for ansata 9 induce the twelve term
structure of the differential modabig. All 14 sets
have between 7 and 10 coefficients (the others being
equal to zero) and ansat; g with all possible coef-
ficients that correspond to the differential model (11)
is

X =aop+ aix +asxy,
Yy =bo+ b1x + boy + bexz,

Z=co+ c2y +c3z. (12)

Among the 14 sets, 3 have only 7 terms.
For ansatzA;p, 156 sets of coefficients inducing
the twelve term structure of the differential modglg

sequence than the kneading sequence of the Rossler attractor. Theal® found. The 156 sets have between 7 an(_j 12 terms.
model dynamics is therefore very close to the dynamics of the Amongthem, 14 sets have 7 terms. Ansésg with all

original Rossler system.

possible coefficients that correspond to the differential
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model (11) is

X =agp+aix +asxy,
y =bo+ b1x + boy + b3z,

Z=co+ c1x + c2y + c3z7 + c5xy. (13)

At this stage, we try to select only the terms neces-
sary to capture the underlying dynamics. A seven-term
ansatz model which contains the minimum number of
terms of all models summarized in Eq. (13) could be
sufficient to capture the underlying dynamics repre-
sented by our data. We thus first consider only the sets
of seven coefficients for the ansatzg and A»g. Ob-
viously, if in the course of the analysis we find that
seven terms are not sufficient to obtain a satisfactory
ansatz model, sets with a greater number of terms will
be considered.

The 3 seven-term models correspondingd g and
the 14 seven-term models correspondingite lead

C. Lainscsek et al. / Physics Letters A 314 (2003) 409427

a1 = —apbscz + aobacs,

ap = asbaco — a1bscz — asbocs
+ a1bac3 — apbscs,

a7 = asb3cy — asbicz — aibscs,

a21 = b3cz — bacs,

a25 = apbz + aocs,

@A = | ®26 = asb1 + bacs, (15)
a35 = 2ap,
aze = —bz —cs,
44 =—2,
asp = by + c3,
Q55 = —do,
ag7=3.

In Egs. (14) and (15) the additional equations
0= fm(ai,bj,c) with m =1,2,...,77 andm #
{1,6,7,21, 25,26, 35, 36, 44, 52, 55, 67} are not listed
since the vanishing coefficients;, b;, c,) make the
functions f, (a;, b;, ck) zero. These equations there-

to 17 sets of nonlinear equations that must be inverted fore do not provide any additional information and can

independently in order to obtain a model in the b€ éxcluded. _ _
Ansatz Spac®3(x, y, z). Each of these sets of non- The transformations (14) and (15) are inverted us-

linear equations expresses the relationship between thd"d & genetic algorithm described in Appendix A. Such
coefficients, of the differential model and the ansatz @n algorithm provides an efficient way to solve a nu-
coefficients{;. b;, &}. The class of transformations merically ill-conditioned problem. Depending on the

associated with the models described by the reduced-number of terms involved in the models, the problems
form (12) for ansatzi1g is given by may be over-determined or under-determined for some

{a;, Ej, cr}. Such optimization problems tend to have

many local minima and only a global search procedure
such as a genetic algorithm allows to find the global
minimum. The algorithm here proposed may also be
used for a larger set of equations. Among other op-
timization criteria, the genetic algorithm is set up to

reject models which are numerically unstable during
integration. This is done by integrating the candidate
models from a set of 10 randomly chosen initial con-
ditions over 5000 integration steps. The model is re-
jected when none of this 10 integration remains within
the interval[—10% 10%].

a1 = apbacs,

ap = —apbecz — asbocz + aibacs,
a7 = asbeco — aibscz — asbics,
a21 = —asbo + a1b2 — bacs,

a5 = 2apb2 + aocs,

26 = bgeo,
i o35 = 300’ ( )

a3e = —2bo — c3,

@44 =3, The genetic algorithm is set to minimize the least
as52=b2 +c3, square errorp as defined in Eqg. (A.1) in order to
55 = —dao, invert the transformationg; g andgzq for the different
ag7=4. sets ofw; corresponding to different thresholds

We use a two step procedure. The first run of the
Similarly, the class of transformations associated with genetic algorithm is used to separate the potentially
the ansatz models described by the reduced-form (13)good models from those producing a large misfit error.
for ansatzA ;g is given by In this run the population is set to a small size and
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no absolute convergence to the global minimum in the are near those values found in the previous iteration are
solution space is sought. designed to be preferred by the genetic algorithm. For

In the case of the differential model¥ g, the coef- example, if the different values for coefficiems are
ficients@s4 andagy are estimated by the algorithm to  between 123 and 258 after the first iteration, values
be equal to—1.9958 and 2965, respectively. These within these limits will have a greater survival rate in
values are significantly different from the values<3 the second iteration. The algorithm also incorporates
and 4 for these terms given in (14). Consequently, we the Newton method to speed up convergence as de-
can see that the misfit error will always remain large scribed in Appendix A. Using this implementation, we
and therefore ansait,g is rejected from further con-  obtain the coefficients;, by, ¢ for the models shown
sideration. in Table 4. These three models generate chaotic attrac-

In the case of the differential model3, the least tors (Fig. 6) which are equivalent as proved below.
square errors distribution for the 14 seven-term sets  Note that modeM g has the exact same structure
of coefficients is shown in Fig. 5. Observe that out of of the original Réssler system (Eq. (8)). We show next
the 14 sets, three produce significantly lower residuals. that all three seven term models are related through a
The significant gap in the residual values serves as atransformation which leaves the dynamics unchanged.
preselection criterion and we limit our investigationto First, we observe that frompyg one can determine
these three possible reduced forms from anggig

which are 0
X =aog+ asxy, ° . d

Ms {y'=b1X+bsz, (16) . o .0 .3
Z=co+c2y +c3z, 0L e . o o ]
X =ag+ a1x + asxy, °

: y=>b b3z, 17

Mao { y 1X + 03z (17) In(p) 14 L i
Z=1c2y + 3z, R
X =ap+ asxy,

Maz1: { y =bo + b1x + b3z, (18) o7 L ] 'Y |
Z=c2y +c32.

The coefficientss;, Ej, ¢r in these models are found

by performing the second genetic algorithm run. The 0 s 10 15

following implementation features are utilized in the i

second run. The algorlt_hm IS |n|t|<_ell!zed using the half Fig. 5. Logarithm of the residualg) (see Eq. (A.1)) of théirst run

of the numerically obtained coefficients from the first of the genetic algorithm for the 14 sets of coefficients for ansatz
step that corresponds to the smallest residuals. In the A,. Each points correspond to the global error computed for a
subsequent iteration the values for theb;, ¢, that given value of the threshold.

Table 4
Estimated coefficients for the 3 models obtained by inverting the transformagipnsing the genetic algorithm. Modeél11g has the exact
structure of the original Rdssler system (Eq. (8)). Modelg and M1 are shown to be alternative representations of the Rdssler system

Coefficient Rossler system ModéH g Model M1 Model M 11

ap 2.000 1998 1998 1998
ay —4.000 . —3.992 .

as 1.000 Q401 0264 1305
bo : : : 7.741
b1 —1.000 —2.509 —3.808 —0.768
b3 —1.000 2271 Q337 —2.660
o : —4.381 : :

c2 1.000 —0.440 —2.966 Q376

c3 0.398 Q395 0395 Q0395
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6.5

((x,y,2) = (u3, u1, uz) in EQ. (8))
45 ¢ XxX=b+Cx+xy,
25 F y =—X—2Z,
z=u, y=y+az, (19)
05} it becomes
sk X =ag+ (a1 + nas)x + masxy
=do+dix +asxy,
-35 : ‘ : : ;
“2200  -150  -100 50 00 50 . kb b1 b3 _
¥t R
a) Model M ~ ~ ~
650 @ 6 =bg + b1x + b3z,
’ . nc2+kes meo -
i=—"——+—"y+c32Z (20)
450 | J J
= Co + C2y + C3z.
B0 ¢ The parametersn and j in Eq. (20) are scaling
Z=u2

parameters for the and z coordinates. Depending
on how the parameters andk are chosen, different
models with more than seven terms can also be
obtained (see Table 5). The time evolution of these
numerically integrated models is identical up to the

50 |

-150 |

-35.0

150 2100 =50 00 50 100 150 200 scalings and displacements=my +n andz = jZ +
y=u i initi iti Yo—n zo—k
1 k when using the initial conditionéxo, <% —, <2—).
(b) Model Mo Thus, through this analytic transformation we identify

375 e five additional models besides the three models which
= we found computationally.

All eight models are dynamically equivalent to the
original Réssler system and the five additional models
containing either 8 or 9 terms could have been also
obtained numerically by running the genetic algorithm
on all 156 possible sets of coefficients fégg. Note,
that all 156 possible sets lead to the same differential
model, but only the eight sets listed in Table 5 have
s === the same values for the coefficients which makes
=60 =50 -40 =30 -20 -10 00 10 the identification of these alternative representations

Y= possible.
(c) Model M1y In fact, there exists an infinite number of models
Fig. 6. Phase portraits associated with the three ansatz models. Planghat produce the same time series. These models can
projection in theyz-plane are shown. be written as a generalization of Eq. (20),

325 |

275

225

1.75

only the product$szco = —1 andasby = —1. In other X =ao+dix + asx Py,
words, one of these c_;oefficients_ may be arbit_rarily qu — bix + b3®.,
fixed until the second is chosen in order to satisfy a . . ~
constant product. Such indetermination corresponds P =C2Py + 39, (21)

in fact to a rescaling of the andz variables. When  where®, = @,(y, z) and®, = @.(y, z) are indepen-
the coordinate transformatiotx, y, z) — (x,my + dent generic functions of the unobserved state vari-
n, jZ + k) is applied to the original Réssler system ables. Therefore, reconstruction of dynamical systems
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Table 5
Ansatz models of Eq. (20) that are equivalent to the original Rossler system
Meg Mg Mai11 8-term models 9-term models
a _ a _ a _ ai ai
n —a =4 0 —m =4 —a =4 # = #0 £0,#£4 0 #—g #0
nep ncp ncp ncp nep
k 0 0 Y #0,# -7 0 e #0,#-75 #0,# -5
ap 2 2 2 2 2 2 2 2
aj +nas -4 —4+n —4+n -4 —4+4n
masg m m m m m m m m
kb3 4 _k n _k _k
m 0.398n m 0.398n m m
by _1 _1 _1 _1 _1 _1 i _1
m m m m m m m 7 m
Jbs b ¥ b ¥ b ¥ v ¥
m m m m m m m m m
neptkes 4 4+0.398 n 0.398 n+0.398
7 J 7 J J 7
mez m m m m m m m m
J J J J J J J J J
c3 0.398 Q398 Q398 Q398 Q398 Q398 Q398 Q398

from a single time series is only possible in a space C. Letellier wish to thank the AMADEUS program
spanned by the time series itself and independent func-and F. Schurrer for encouraging this work.

tions of the unobserved state variables. General results

on such a class of models are postponed for future

works. Appendix A. Solving a system of nonlinear
algebraic equationsusing a combined global and
i local search procedure
4. Conclusion
For finding the model in the Ansatz Space from

Using a global modeling technique based on an a differential model, we need to solve a system of
Ansatz Library introduced in [7], a global modelinthe  under- and simultaneously overdetermined nonlinear
differential space and a model in the space associatedalgebraic equations. This problem is solved by using
with the chosen ansatz have been obtained from acombined global and local optimization procedures.
scalar time series of the third coordinate of the Rossler The global search is performed with a Genetic Algo-
system. The eight identified models are dynamically rithm (GA) while the local search is realized by a New-
equivalent and three of the models are minimum term ton method as implemented inAvILAB .
models containing seven terms only. These are the A GA [24,25] is a global search algorithm that
first models ever obtained for such a time series in js based on natural genetics. A given problem is
3D space without a prior knowledge on the structure encoded as an array (population) of artificial strings
of the model. Moreover, all spurious terms have been (chromosomes). In the cases considered here where
removed by a structure selection technique. Another an optimization problem has to be solved, the guesses
important aspect of this technique is that a general for possible solutions of a model are in the Ansatz
class of model forms which capture the underlying Space. In our case, the chromosomes are strings of
dynamics can be identified. 1's and 0’s. The GA manipulates this representation of
the solution, but not the solution itself. A criterion for
discriminating good from bad solutions according to
the relative fitness of these solutions must be defined.
This will be used to guide the evolution for future

C. Lainscsek and |. Gorodnitsky are supported generations. The mean-square residual is here used as
by the NSF grant 11S-0082119. C. Lainscsek and discrimination criterion.

Acknowledgements
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After having encoded the problem in a chromoso-
mal manner and having found a discrimination strat-
egy for good solutions, an initial population of en-
coded solutions has to be created. This is accom-
plished by using a generator of random numbers with-
out any prior knowledge of possibly good solutions.
The initial population s in fact a set of random guesses
for the optimal solution.

The evolution of this initial population towards
later generations is obtained by applying genetic oper-
ators in an iterative process. The most common genetic
operators are (1) selection, (2) recombination, (3) mu-
tation, (4) elitism, and (5) junk [24,25]. Selection al-
locates greater survival for better individuals. Better
solutions are preferred to worse ones. Additional new,
possibly better individuals not present in the original
population may be created via recombination and mu-
tation. Recombination combines parental traits (bits)
in a novel manner to form a better offspring. Mutation
on the other hand modifies a single individual. It is a
random walk in the neighborhood of a particular so-
lution. Elitism guarantees that good solutions survive.
By introducing junk, randomly generated individuals,
into the new generation new blood is also introduced.
Such a process helps to find the global minimum.

A sketch of our method can be found in Fig. 7.
The color and shape notation is as follows. Round
boxes correspond to genetic operators. Light boxes
represent operations in the encoded binary space while_.
dark boxes are connected to operations in the decimal

Fig
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local
optimization

binary encoding

add mutation
of the best

optimization

minimum .

binary encoding

converged?
NO
YES

PEEPO O WEOEEE®EO

. 7. Flow chart for solving a system of nonlinear algebraic
equations using a GA (global search) combined with a Newton

parameter space. The one black box represents theémethod (local optimization).

local search part. The levels in the flow-chart indicated
in Fig. 7 by circled boxes are described below.

1. An initial generation of P; = 600 individuals,
which are possible candidates for a solution of
our problem, is generated using a random number
generator. For the rest of the loop it is set to
P; = 100. The population size’; is a critical
parameter for running a GA. If it is chosen too
small, no convergence in a reasonable time can
be expected. If itis too big, the computations will
slow down and each loop will take too long. To
take this into account, the population size in our
genetic algorithm will be dynamic. If big changes
can be yielded from generation to generation, the
number can be smaller than when the solution is
trapped in a possible local minimum.

We also use another trick to keep the population
size small. We let the GA run for each set of dif-
ferential model coefficients,’s. Due to the range
of the thresholds, over which a plateau is ob-
served, 13 different sets of coefficients are iden-
tified. Each of these GAs yield another solution,
since the coefficients were computed from differ-
ent parts of the set of data points. From these so-
lutions we select the models with a significantly
lower error and use them to determine coefficient
range on which a second run of the GA will be
performed. That means that the GA uses, for in-
stance, values betweer6land 25 for coefficients

ap during the second run. It turns out that some
coefficients converge immediately to very small
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fluctuations around the actual value, while others
do not. This is an effect of the ill-defined problem
to be solved.

. After generatingP; = 600 individuals, a local
Newton method is applied on 20 randomly chosen
individuals. This number is a trade-off between
efficiency and computation time, since running it
on all of them would require too much time. This
yields an initial population, which is a grid of local
minima and completely random choices of our
solution.

. The individuals have to be encoded in a binary
manner. Since a set of real numbers is to be
encoded into a sequence of binary strings, an
upper and a lower limit for possible numbers in

our search space have to be chosen as well as the

desired accuracy for these numbers. In our case,
we use as the upper limit, = 50 and as the lower
limit L; = —50 and an accuracy of = 1073,

The encoding is continuous. This means that all
possible

L,—L
B= Ceil(logz(T] + 1) + 3)

bits for one real number are used for encoding.
In other words, two binary strings can represent

the same real number. Such a procedure does not

effect the search, since the number of bits will
be large. The added factors 1 and 3 are used to
even out numerical uncertainties and to reduce the
ambiguity of the continuous encoding.

Each individual consists of 12 real numbers corre-
sponding to our 12 unknowns. Each of these real
numbers are encoded in the previously described
manner, which yields 12 strings & 0’s and 1's.
They are then connected to one line of our popula-
tion matrix. TheP; such lines forma 12B x P;
matrix, which corresponds to one population.

. Starting from the second iteration mutated indi-
viduals of the winner of the former generation
are added. This is done in two steps. In the first,
one number is left constant and all others are mu-
tated. In the second step only one number is mu-
tated and all others are left constant. Mutations
are done with a certain mutation probability. To
avoid too low or to high mutation probabilities,

it is randomly changed between20and 09 in
each generation. Small mutation probabilities af-

9.

10.
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fect small changes, while big mutations can yield
big changes of the individuals.

. To add new blood to each generation, randomly

generated individuals, the so-called junks, are
added to each generation.

. The whole generation is mutated with a small

mutation probability and added to the existing
population.

. In order to do the evaluation of our population in

the next step, we have to decode the binary string
matrix back to the space of real numbers.

. The fitnessf is the mean least square error

(A.1)

where ¢; are the estimated coefficients of the
differential model whileo; are the coefficients
obtained from the solution of equation (14) or
(15) by the GA. Better individuals have a bigger
chance to have more offspring while bad individ-
uals die. To make a selection, better individuals
get a higher selection numbg,

S; = 100( 100;;:2 __}::(f )))3 (A.2)
according to their fithess. Each individual is thus
o _PsSi
o Zf;l Sj

times copied into the population ready for cross-
over.

The best individual could be a solution in the
neighborhood of the global optimal solution. The
GA would probably need a few generations to
converge. To speed up this convergence, a Newton
algorithm is applied to the winner of the former
generation.

After watching runs of the GA for a couple
of times a typical convergence time of about
5 iterations is used, if the population did not
get trapped in a local minimum. The escape
from such a local minimum can take a long
time. To solve this convergence problem after
25 iterations, which corresponds to five times
the typical convergence time, a completely new
generation in the manner of levels 1 and 2 is
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generated. The former unsuccessful generation is
stored, but not used for 5 iterations. After that the
new and the old generations are merged and used
for further computations.

11. The population is again binary encoded.

12. Parts of the strings are exchanged between pairs
of individuals to create new offspring. Better
individuals will have more children.

13. Has the error changes for the last 10 generations?

14. To get the solution, the winner of the generation
has to be decoded.

15. Stop the computations.

-10 -5 0 5 10
—4.398 A

(a) VersusA
Appendix B. Modeling from the x-variable of the 3 ‘ ‘ ‘ ‘ ‘ ‘ ‘
Rosser system 6 p 67

This appendix illustrates how the Ansatz Library
can be used when the differential model is induced il 21
by a variable that has no corresponding ansatz in the
library. »10” L -

When the Réssler system is investigated from the e, e W T
uj-variable, there is no counterpart in our library. In 107 R .
such a case, our approach could remain unsuccessful . '
since no coefficients are stable (case whare- 0 1072% -
in Fig. 8(a)). Nevertheless, we can apply a shift by
—C + a to the uz-time series since it can be shown 10‘30 T 3 a0 0 e 0 8o
that an appropriate shift modifies the structure of LA
the differential system induced by the -variable (b) With A = —4.398
:? izufeha;:;?{et?gtagst:rig ?I’?:t)nvglﬁetr(]) tLh: SllttrJL:i:l),l/re Eig. 8. $ignificance of the c'oefficientsn computed from the

time seriess = u1 + A for different values ofA (a) and for
selection does not provide any obvious result, one can A = —4.398 (b).
try simple transformations of the time series as e.g.
applying a shift such as = u1 + A. This was done . . . .
for A e [—10; 10] (Fig. 8(a)). A very clear singularity _ All these mo_nomlals are involved in the differen-
occurs forA = —4.398 which corresponds exactly to  tal modelsD; with / = {1, 10,11, 14,15, 16, 19, 20}.
the coordinate transformation to apply for modifying On_ce the struc_ture is selected, the coefflu_ents may be
the structure of the differential model induced by €stimated easily (note that one threshold is necessary
the u1-variable of the Réssler system in such a way here smcg the tlm_e.serl_es is not spiky). The Rdssler
that it belongs to the library. The structure selection SyStem with the rigid displacemertt - x — C +
then works as for thes-variable (Fig. 8(b)) and the @Y Y.z 2)1s
coefficients with the indices

X = _y — 2,
{1,6,7,21,25,26,36,52, 56,67} j=a—C+x—+ay
are selected. They corresponds to monomials P—b4az+xz. (B.2)
2
{1’ X, X2Y, Z, XY, Y_, Z.XZ, E} (B.1) The differential model induced by thevariable then
X X X reads as:
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X=Y,

Y =27,
Z=ab+a(a—C)+ (2a—C)X + X?—a®Y
bY (@—-0)Y aY?
ot _aXY — —

X X X

YZ

This system is a sum of monomials only because
b2 = ¢3 = a. Such special cases have to be added to
the Ansatz Library. The question, how more complex
transformations of the observed state variable change
the differential model are still under investigation.
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