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A complete study of a copper electrodissolution experiment is achieved. The asymptotic motion settles down 
on a strange chaotic attractor which may be embedded in a 3D reconstructed space. In a 2D PoincarC section 
the attractor is found to be topologically equivalent to a 1D map, and its orbit spectrum is governed by the 
unimodal order. A set of equations which suitably model the experiment is extracted by a global vector field 
reconstruction method. The attractor obtained by integrating the reconstructed system is topologically equivalent 
to the original attractor. It is shown that the reconstructed model represents the dynamics without taking into 
account the effect of the dynamical noise on the experiment. 

I. Introduction 

Periodic and chaotic oscillations have been observed in a 
number of electrochemically reacting systems.' Experiments 
are normally conducted potentiostatically, in which case the 
current oscillates, or galvanostatically, where the oscillations 
are in the potential. We are interested in the characterization 
of time series from such reactions and the development of 
mathematical models in order to increase the understanding of 
the dynamic behavior and its dependence on parameters. 
However, it is often the case that such models do not exist, or 
they may not be able to be used to extract the dynamics. In 
such cases, ad hoc models developed directly from the 
experimental data can sometimes be used to characterize and 
predict the system dynamics. One such approach which has 
been used to characterize time series from chemical reaction 
processes is artificial neural networks (ANN).2-5 A " s  have 
been able to reproduce chaotic attractors and a bifurcation 
sequence of period doublings to chaos. Of particular relevance 
to the present paper is the work of Rico-Martinez et aL4 in which 
a global vector field reconstruction was obtained using continu- 
ous-time modeling with artificial neural networks. In this paper 
we develop another vector field reconstruction of chemical chaos 
in the same electrochemical system, and we show that additional 
information about the structure of the dynamics can be obtained. 
The reaction considered is the electrodissolution of copper in 
phosphoric acid. It has been known for some time that 
oscillations can occur in this system,6 and the reaction has 
received considerable attention since that time; see, for example, 
refs 7 and 8. An extensive study of the dynamics of the reaction 
has been carried out by Schell and c o - w o r k e r ~ , ~ ~ ' ~  who showed 
the existence of Farey sequences of mixed-mode oscillations, 
period doublings to chaos, altemating periodic and chaotic states, 
etc. 

11. Theoretical Background 

A. Reconstruction Method. In the last few years, many 
papers have been devoted to global vector field recon- 
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~truction."-~~ In particular, the extraction of a set of equations 
which models the experimental data is a very important goal in 
the study of nonlinear systems. If a good equivalence between 
the original attractor and the reconstructed attractor is achieved 
(for helpful discussion about this problem, see ref 24), informa- 
tion on the evolution of the unobserved coupled variables 
required for the complete description of the system may then 
be available. 

Let us consider a nonlinear dynamical system defined by a 
set of autonomous ordinary differential equations: 

.k =flx;p) 

in which x( t )  E Rn is a vector-valued function depending on a 
parameter t called the time andf, the so-called vector field, is 
an n-component smooth function generating a flow q$. p E IRP 
is the parameter vector with p components, assumed to be 
constant in this paper. The system (1) is called the original 
system and is unknown in the experimental cases. Without any 
loss of generality, we present the method with n = 3. The 
original system may therefore be written as 

i =f3(x,y,z) 

From an experimental point of view, only one variable is 
recorded as a scalar time series. Let us take it to be x.  

The aim is thereafter to reconstruct a vector field equivalent 
to the original system under the form of a standard system made 
of the observable and of its derivative according to 

x = i = y  

Y = Z  (3) 

in which the reconstructed state space related to the stand- 
ard system is spanned by derivatives coordinates (X,Y,Z) with 
x = x.  
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A global vector field reconstruction may then be achieved if 
a good enough approximation F, of the so-called standard 
function F, is designed. The approximation ps is obtained by 
using a Fourier expansion on a basis of orthonormal multivariate 
polynomials generated on the data These polynomials 
depend on the derivative coordinates (X,Y,Z), therefore involving 
terms reading (x'yizk). As described in ref 23, we introduce 
monomials P' which read 

p' = xlrik (4) 

The one-to-one relationship between triplets ( i j , k )  and natural 
numbers 1 is completely defined in ref 23. The approximation 
of the function may then be written as follows: 

N I  

F, = K,P' 
I= 1 

where Nl is the dimension of the basis {P'}. All the information 
concerning the chaotic attractor is therefore encoded in the set 
of coefficients KI,  which forms a signature of the attractor. 

The time derivatives used in this algorithm are estimated by 
a discrete linear filter 

P 
Wj(t) = rj,p(n)x(t + nz) 

n = - p  

where the time series x(r)  discretized on the time step z is the 
input, w,(t), the so-called Legendre coordinate, the output, and 
rj&) is an appropriate discrete convolution kernel, namely the 
discrete Legendre polynomials, parametrized by the choice of 
p and the order j of the desired derivative.25 

After an expansion in a Taylor series, we obtain 

- .J V 

(7) 

where rjXp are the discrete Legendre polynomials given in ref 
25. After algebraic manipulations, the following relation is 
obtained: 

where c, is a normalization constant and zw = (2p + 1)z is the 
window size. The Legendre coordinates are then proportional 
to thejth-order derivative xOl(t) with a constant of proportionality 
determined by j ,  p ,  and tw. Following Gibson et a1.,z5 this filter 
defines the optimal linear coordinate transformation. 

It is then found23 that the reconstruction depends on N,, the 
number of points (Xi,Yi,Zi,Zi) ( i  E [l,Nq]) on the net, Ns, the 
number of net points sampled per pseudoperiod, Np,  the number 
of retained multivariate polynomials, and z,, the window size 
on which are estimated the derivatives by using the linear filter 
(6). The vector (z,N,,Ns,Np,zw) is called the driving vector and 
defines all the reconstruction parameters. In practical applica- 
tions, the choice of such parameters may have a significant effect 
on the quality of the results.23 A guideline for choosing a 
generally good driving vector is based on an error function E, 
according to 
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No 

. .  
? 7 =  (9) 

i= 1 

This error function is calculated by using absolute values for 
computational efficiency. 

E, may be understood as a relative error between the value 
of the standard function directly evaluated from the time 
series and the one obtained from its approximation. For a given 
value of N,, optimal values for N ,  and the number of polynomi- 
als Np are obtained by minimizing the error function. However, 
the value of Nq at which the minimized error function passes 
through a minimum or a local minimum does not warrant a 
correct integration. Therefore, the search of a successful global 
vector field reconstruction needs systematical trials, which are 
possible with computational help. The use of such an error 
function is similar to the one of the least-squares minimiza- 
tion term proposed by Brown et a1.26 and is very convenient 
for the global vector field reconstruction method here de- 
veloped. 

B. Topological Characterization. In the last few years, 
several works discussed the topological description of chaotic 
attractors. In particular, the idea has arisen that an attractor 
can be described by the 'population of periodic orbits, their 
related symbolic dynamics, and their linking numbers.27 In 
three-dimensional cases, periodic orbits may be viewed as 
knots,z8 and consequently, they are robust with respect to smooth 
parameter changes and allow the definition of topological 
invariants under isotropy (continuous deformation). 

The topological approach is based on the organization of 
periodic orbits. We now present the basic concepts of topologi- 
cal characterization and symbolic dynamics. For the sake of 
simplicity, we use the well-known Rossler attractor as an 
example. 

1. Template. The Rossler systemz9 reads 

i = b + z(x - c) 

where (a,b,c) are the control parameters. When (a,b,c) = 
(0.398,2,4), the asymptotic motion settles down on a strange 
chaotic attractor (Figure 1). 

The attractor may be viewed as a simply stretched and folded 
band. Two different stripes may be exhibited from this attractor 
(Figure 2): one, located in the center of the attractor, is a very 
simple stripe without any n twist (Figure 2a); the second stripe 
presents a negative n twist (Figure 2b) and is therefore similar 
to a Mcebius band. 

In this way, we distinguish two topological regions on the 
attractor. Following a pioneering paper by Birman and Wil- 
l i a m ~ , ~ ~  it has been s h o ~ n ~ ~ , ~ ~ , ~ ~  that a template which encodes 
the topological properties may be built. Such a template is a 
convenient view of the attractor to exhibit the different stripes 
within the attractor and their relative organization. From the 
Rossler attractor, a template constituted by two stripes is 
extracted and displayed in Figure 3a. The band is split into 
two stripes, one without any n twist and one with a negative n 
twist (Figure 3a). Due to a standard insertion convention?' 
stripes may be reinjected in the band from back to front and 
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Figure 1. Rossler attractor (a,b,c) = (0.398,2,4). 

stripe o stripe I : upperface 

stripe I : lower face 
Figure 2. Two stripes of the Rossler attractor. 

from left to right. Consequently, a permutation between the 
stripes is required, thereby leading to the configuration in Figure 
3b. 

This convention allows us a description of the template by a 
linking matrix3’ as follows: diagonal elements (M(i,i) represent 
the n-twist number of the ith stripe and off-diagonal elements 
M ( i j )  (i f j )  are given by the intersection between the ith and 
thejth stripe. One may check that the Rossler template is then 
defined by the linking matrix: 

Each stripe may be labeled: symbol 0 designs the simple 
stripe while symbol 1 is associated with the stripe which presents 
a negative n twist. In this way, trajectories are encoded by a 
string of “0” and “1”. Periodic orbits may then be encoded in 
a one-to-one way. We have here defined symbolic dynamics. 
This procedure needs a precise partition of the attractor which 
is given by a first-return map to a PoincarC section. 

2.  First-Return Map. A PoincarC section is here defined as 
the set of intersections of a chaotic trajectory with a plane 
transverse to the flow. For the Rossler system, such a Poincar6 
section is suitably defined as 

where x- = (c - Jc2 - 4ab)/2 is the x coordinate of the 
central fixed point.32 

The first-return map is then computed with the y variable 
and displayed in Figure 4. It presents two monotonic 
branches: an increasing branch associated with stripe 0 and a 

I n 

Figure 3. Template of the Rossler attractor. A permutation between 
the stripes is required by the standard insertion convention. 

1.5 
1.5 2.5 3.5 4.5 5.5 

Yi 
Figure 4. First-return map of the Rossler system: (a, b, c) = (0.398, 
2, 4). 

decreasing branch associated with stripe 1. The critical point 
yc which separates the branches precisely defines the partition. 
In our case, yc = -3.04. Thus, at each intersection yi with the 
Poincar6 plane corresponds to a code Kbi) :  

Once periodic orbits are extracted by a Newton-Raphson 
iteration scheme, periodic points in the PoincarC section may 
be encoded. An orbit of period p has p periodic points and is 
represented by a string S of p codes: 

where yjs are the y coordinates of the periodic points. 
3. Unimodal Order. Each period-p point is represented by 

a symbolic sequence of p symbols. Thus, the ith point of a 
period-p orbit is labeled by the string 

All periodic points are then ordered by the u n i m o d a l ~ r d e r . ~ ~ ~ ~ ~  
Definition. The unimodal order f 1  on the symbol set 0,l is 

defined as follows. Let 
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w2 = t l ~ 2 . ~ . ~ k ~ k + l . . .  

where uis and tis designate the codes. Suppose u; = z; for all 

common part between Wl and w2. Assuming a string ( s la2 . . . f fk - l  

is even if the sum XjI; (si is even, and reciprocally (w* is 
considered as even when no common part is found between 
W1 and WZ) ,  then 

i < k and uk * ' tk .  Let w* = (sl ... ak- I = Z1 ... Zk-  1 be the 

W ,  f, W ,  if W* is even and a, < zk 

W ,  f, W2 if w* is odd and tk < a, 

w2 fl W ,  if w* is odd and (sk < zk 

W2 f ,  W ,  if W* is even and tk < ( s k  

When Wz f l  W I ,  we say W I  implies W2. 
A period-p orbit will be denoted by the symbolic sequence 

W, (without any parentheses) which implies the p - 1 others. 
This sequence is noted (Wi), included between parentheses, and 
here called orbital sequence. In a similar way, two orbital 
sequences may be ordered following the unimodal order. When 
orbital sequence (Wl) implies the orbital sequence ( WZ) ,  we say 
that (Wl)forces (W2) and we note (W2) f 2  (W,) where 4 2  is the 
forcing order. 

In this way, all periodic orbits are ordered. The orbital 
sequence which forces all orbital sequences extracted from the 
attractor is called the kneading sequence. Within the Rossler 
attractor, the kneading sequence (among the orbits of period 
less than 12) is found to be (10111101010).32 All orbits forced 
by the kneading sequence are found up to period 11. 

4 .  Symbolic Plane. With numerical systems, an orbit 
spectrum is always well-known within the limits imposed by 
round-off errors since orbits are extracted by integrating the 
vector field. Nevertheless, from experimental data, periodic 
orbits are extracted from a time series by using a close-return 
method in a reconstructed space. Due to the limited amount of 
data and the influence of external noise, the orbit spectrum is 
rarely well-known. As shown by Tufillaro et u Z . ~ ~ ,  the popula- 
tion of periodic orbits depends in a crucial way on the length 
of the time series. Consequently, the determination of the 
kneading sequence is rather unprecise from short time series. 

Fang36 has shown that an empirical procedure (also used by 
Tufillaro et ~ 1 . ~ ~ )  may exhibit the pruning front and, conse- 
quently, the kneading sequence. Let us recall that a chaotic 
trajectory forms a string 

where a0 is the present, (s-; the past, and (si the future ( i  7 0). 
Symbolic coordinates which span a symbolic plane are 

defined on the future and the past as follows: 

D b; i 

i=12' j =  1 
x,(s) = x-, where b; = c(sj (mod 2 )  

D c; i- 1 

y,(s) = x-, where ci = (mod 2 )  (15) 
i=12' j=O 

where 

Pruning Front 
1.00 

imt II re 
111 11 II 111 I r 0.80 

0.40 1 I., I, .I 111 ... I, .. I. 
:: i; ii 

0.20 0.40 0.60 0.80 1.00 

x,  

0.20 

Figure 5. Symbolic plane of the Rossler attractor: orbit spectrum is 
governed by the unimodal order as shown by the pruning front well- 
estimated by a line. 

If s is an infinite symbol string generated by a chaotic orbit, 
then D is infinity in the above definition. However, since we 
are dealing with finite data sets, Tufillaro et approximate 
the symbolic plane coordinates of a point by taking D = 16. In 
this way, we can use a finite symbol string from a chaotic 
trajectory to generate a sequence of points on the symbolic plane 
displayed in Figure 5. In the case of an orbit spectrum governed 
by the unimodal order, the pruning front is then suitably 
estimated by a line.36 

The symbolic coordinate Xu of the pruning front allows us 
to define the kneading sequence. Indeed, by computing the 
symbolic points of periodic orbits, the kneading sequence is 
associated with the orbit whose maximum xu is closest to the 
pruning front. For reference, maximum symbolic coordinate 
xu of orbits with a period less than 9 are reported in Table 1. In 
the Rossler case, the pruning front is located at xu = 0.8376. 
From the orbit spectrum of the Rossler attractor, the kneading 
sequence is (101 11 101010) whose symbolic coordinate is found 
to be 0.8375. Good agreement is therefore obtained between 
the orbit spectrum and the symbolic plane. 

From experimental data, the symbolic plane will be system- 
atically used to check the orbit spectrum. 

5. Template Validation. A template of the Rossler attractor 
has been proposed in section II.B.l. An orbit spectrum is 
extracted. Now, the template must be checked by comparing 
linking numbers predicted by the template and the ones counted 
on the attractor. 

The linking number L(NlJV2) of an orbit pair is given by the 
half-sum of the oriented crossings (following the convention, 
given in Figure 6, due to Melvin and Tufillaro3') on a regular 
plane projection of orbits Nl and N2. For example, linking 
number L(1011,l) is equal to -2 (Figure 7). 

A comparison with the template-predicted linking number 
L(1011,l) is achieved by using an algebraic relation between 
symbolic dynamics and linking matrices according to3' 

'1 PL P2 

where NI and N2 are two orbits of period pl and pz, respec- 
tively. M(u;,u,) are the linking matrix elements, and NIay(NlJV2) 
is the layering number determined by using a layering graph 
(sketched in Figure 8 for the couple (lOll,l),  see ref 37 €or 
details). 



7020 J. Phys. Chem., Vol. 99, No. 18, 1995 

0 -  

* 
-2 

4- 

TABLE 1: 
is Less Than 9, Ordered Following the Forcing Order 

Greatest recoordinate of Orbits Whose Period 

W xo( w) W X O ( w )  

. 

1 
10 
101 1 
101 11010 
101 110 
101111 
10111110 
10111111 
1011111 
1011110 
10111 
10110 
101 1010 
101 101 1 
101 101 11 
101 101 10 
101 
100 
100101 
10010110 
100101 11 
1001011 
1001010 
100 10101 
10010100 
10010 
1001 1 
1001 1 100 
1001 1101 
1001 110 
1001111 
1001 1 1 1 1 
1001 1 1 10 
100111 
100110 

0.66665 
0.79998 
0.82351 
0.82489 
0.82539 
0.83076 
0.83135 
0.83267 
0.83464 
0.83720 
0.83869 
0.84848 
0.85038 
0.85270 
0.85488 
0.85601 
0.85713 
0.88888 
0.89230 
0.89410 
0.89492 
0.89762 
0.89921 
0.90194 
0.90270 
0.90321 
0.90908 
0.90979 
0.91049 
0.91337 
0.91471 
0.91763 
0.91827 
0.92062 
0.92306 

10011010 
1001 10 1 1 
1001 101 
1001 100 
1001 
1000 
1000 100 1 
1000 100 
1000 101 
1000101 1 
100010 10 
100010 
10001 1 
10001 110 
10001 11 1 
10001 11 
10001 10 
10001 101 
10001 100 
1 000 1 
10000 
10000 100 
1000010 1 
10000 10 
100001 1 
100001 11 
100001 10 
10000 1 
100000 
100000 10 
1000001 1 
100000 1 
1000000 
1000000 1 
10000000 

0.92547 
0.92605 
0.92912 
0.93022 
0.9333 1 
0.94116 
0.94 16 1 
0.94486 
0.94572 
0.94900 
0.94940 
0.95237 
0.95384 
0.95684 
0.957 18 
0.96061 
0.96122 
0.96469 
0.96496 
0.96772 
0.96969 
0.97253 
0.97274 
0.97636 
0.97673 
0.98037 
0.98052 
0.9841 1 
0.98460 
0.98822 
0.9883 1 
0.9921 1 
0.99223 
0.99606 
0.99609 

In the present case, we obtain: 

1 

1 
2 

L(1011,l) =5[3M(1,1) SM(1,O) +N,ay(lOll , l)]  

(17) = -[-3 - 1 + 01 = -2 

Le., the template linking number L(1011,l) is the same as that 
on the attractor; the template is therefore compatible with the 
attractor. In utmost rigor, a few linking numbers are needed to 
completely check the template. 

As the template which carries the periodic orbits is identified, 
the organization of the orbits within the attractor is known. For 
a complete discussion about equivalence between periodic orbits 
embedded within a strange attractor and orbits of the template, 
see ref 38. 

If time series generated by a model and an experiment, 
embedded in the same way in a three-dimensional manifold, 
induce the same template, the model is compatible with the data. 
If different templates are induced, the model cannot provide a 
valid description of the processes generating the experimental 
time series. 

111. Copper Electrodissolution 

A. Characterization of the Electrochemical Reaction. 
Copper electrodissolution in has been studied by 
Albahadily and Schel19 and has been found to undergo Hopf 
bifurcation to oscillatory behavior followed by period-doubling 
bifurcations to simple chaos. As studied by Coullet and 
T r e ~ s e r ~ ~  and F e i g e n b a ~ m , ~ ~  this simple chaos is characterized 
by a unimodal first-retum map on a Poincar6 section, Le., with 
two monotonic branches, one increasing and one decreasing, 

Letellier et al. 

(4 (b)  
Figure 6. Crossing convention: (a) positive crossing and (b) negative 
crossing. 

a -2 0 2 4 6 
- 

Figure 7. Plane projection of the orbit couple (1011,l). The linking 
number L(1011,l) = ‘/2[-4] = -2. Crossings are signed by inspection 
on the third coordinate. 

1011 1110 1 1101 0111 

0111 I101 I 1110 1011 
Figure 8. Layering graph between (1) and (101 1). Lower base is given 
by the unimodal order of periodic points. Upper base is obtained by 
permutating periodic points of stripe 1 (whose symbolic sequences begin 
by a “1”) since stripe 1 has an odd number of n twists. Periodic points 
of stripe 1 are thereafter permutated with periodic points of stripe 0 
since the intersection number M(1,O) between stripe 1 and stripe 0 is 
odd. The layering number N ~ ~ ~ ( l O l l , l )  is equal to the sum of the 
intersections between (101 1) and (1) (self-intersections are not taken 
into account). Here Nlay (1011,l) is null. 

separated by a maximum differentiable point. This chaos will 
be completely characterized in this section. 

1. Experiment. The time series was obtained from dissolu- 
tion current measurement during the potentiostatic electrodis- 
solution of a rotating Cu electrode in phosphoric acid. The 
experimental setup consisted of a rotating disc electrode which 
had a copper rod, 8.26 mm in diameter, embedded in a 2 cm 
diameter Teflon cylinder. The rotating speed was maintained 
at 4400 rpm. In order to minimize noise, we used a mercury 
contact instead of a standard silver-carbon brush ~ontac t .~’  A 
cylindrical platinum net band (much larger than the disc) was 
put around the disk as a counter electrode to get uniform 
potential and current distributions. 

The cell was a 500 mL flask with a side neck in which the 
capillary probe was fixed. The reference electrode was SCE, 
which was separated from the solution by the capillary. The 
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Figure 9. Current-time series [ ( t ) .  

distance between the disc surface and the tip of the capillary 
was about 6 mm. The cell contained 250 mL of 85% phosphoric 
acid, and a water bath was used to maintain its temperature at 
20 "C. 

A Potentiostat (Princeton Applied Research Model 273) was 
used to regulate the potential of the working disc electrode with 
respect to the SCE and to monitor the current. The data were 
recorded at a frequencyf, of 1500 Hz using a 486 PC and a 
data acquisition board (Model DAS-16, Keithley MetraByte's). 
The current-time series Z(t) is displayed in Figure 9. 

After the initial transient signal disappeared, the behavior 
settles down to a chaotic attractor in the state space. 

By using a reconstruction method as proposed by the 
pioneering paper by Packard et aZ.,l such an attractor may be 
reconstructed from the current-time series in a space spanned 
by derivative coordinates. In order to do that, we have to 
estimate the dimension m of the reconstructed state space. This 
may be achieved by using the well-known algorithm proposed 
by Grassberger and P r o ~ a c c i a ~ ~  which estimates the correlation 
dimension D2: m may be taken to be equal to the first integer 
greater than D2. From the current-time series Z(t), we found 
D2 = 2.3 f 0.2. Therefore, a tridimensional space should be 
sufficient to obtain a good representation of the attractor 
generated by the copper electrodissolution. 

We assume (and shall prove) that the current Z(t) is a good 
observable, Le., the reconstructed attractor in the tridimensional 
space spanned by the derivative coordinates is at least topologi- 
cally equivalent to the original unknown attractor. The copper 
electrodissolution may then be modeled by a set of three 
equations and the corresponding attractor reconstructed in a 
tridimensional space spanned by the derivative coordinates is 
generated by 

x = Z(r) 

Y = Z(t) (18) 

z = Z(t) 

A projection in the XY plane of the attractor is displayed in 
Figure 10. Successive time derivatives of the current-time 
series Z(t) are estimated by using the linear filter built on a 
Legendre polynomial basis (as described in section 1I.A). The 
window size z, used to estimate the derivatives is taken to be 
equal to 21t (where t = & - I ) .  

2 .  Orbit Spectrum. The attractor presents a "hole" in its 
middle which warrants the existence of a Poincart plane and 
the possibility of easily constructing a first-return map without 
any ambiguity. The Poincar6 section P is defined as follows: 

P = { (X ,Y )  E R21X = 43.7, Y > 0) (19) 

The first-retum map from the Poincart section P to itself is 
displayed in Figure 11. The map is almost unidimensional, 
which is a signature of the strongly dissipative character of the 
dynamics. A unimodal map with a unique maximum is 
obtained. 

1.0 - 

0.5 - 

-0.5 ' 
25 35 45 55 

X 

Figure 10. Projection in the X Y  plane of the attractor generated by 
the copper electrodissolution. 

0 C 1 
1.5 

*. .* / 

".I 

0.0 0.5 1.0 1.5 
Y l i )  

Figure 11. First-retum map on the Poincark section P. 

The critical point C allows the definition of a symbolic 
dynamic as follows: 

0 if Y 0.32 

1 if Y > 0.32 (20) 

The population of periodic orbits is then extracted from the 
current-time series { Z , } : y ,  where n is a discretized time in 
terms of t. The Poincart set is then constituted by 1949 points. 
The population of periodic orbits which is extracted by a close 
retum method is reported in Table 2. 

Orbits are found with a close-retum less than 1% of the 
attractor size. Up to period 7, all periodic orbits forced by the 
sequence (100110) with respect to the forcing order f 2  are 
found. By plotting the symbolic plane, the greatest symbolic 
coordinate X, is found to be equal to 0.9250, which also implies 
the kneading sequence (100110) (see Table 1). A good 
agreement is therefore obtained between the symbolic plane and 
the orbit spectrum. The attractor is govemed by the unimodal 
order; this is consistent with the period-doubling cascade as a 
route to chaos, observed by Albahadily and S ~ h e l l . ~  

Nevertheless, one may remark that the pruning front is not 
well-estimated by a line as requested by a system which is 
govemed by the unimodal order. This is not very surprising in 
so far as the experimental first-retum map is not perfectly 
unidimensional. However, a well-visited zone may be exhibited 
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TABLE 2: 
Designates Orbits Found within the Experimental Attractor 
Ac, 0 Orbits Found Within the Reconstructed Attractor AR. 
Kneading Sequences are Designed by a Double Symbol. 
Orbits are Found with an Error Less Than 1.00% of the 
Attractor Size 
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I O  

period sequence Ac AR 
1 1 0 0 

0 0 
2 10 0 0 
3 101 0 

100 0 
4 101 1 0 0 
5 10111 a 0 

101 10 0 00 
10010 0 
1001 1 0 

6 101 110 0 0 
101111 0 0 
100101 0 
1001 11 0 
1001 10 00 
10111 I1 0 0 
1011110 0 0 
1011010 0 
101 101 1 0 
100101 1 0 
100 1010 0 
1001 110 0 
1001 11 1 0 

7 

up to xo = 0.8420. A small number of points are found in the 
range [xo,Xu], representing ten of the total set. 

Considering the first-return map in Figure 11, a natural 
invariant density e( Y) which indicates the frequency of visits 
to any given interval of the Poincar6 section may be esti- 
mated.43s44 e(Y) may be computed as a numerical histogram 
approximation. In the ideal theoretical case, it is shown that 
singularities of e(Y) are produced at iterates of the critical 
point.44 Consequently, e( Y) exhibits sharp peaks associated with 
the kneading sequence since the periodic orbit encoded by the 
kneading sequence is generated by the critical point. 

The invariant density for the Rossler attractor is exhibited in 
Figure 13a, indeed displaying the kneading sequence singulari- 
ties. The invariant density for the experimental copper attractor 
is conversely displayed in Figure 13b. Although the Rossler 
and the copper attractor possess the same orbit spectrum, one 
may remark that the invariant density of the copper attractor 
vanishes progressively on the tails of the distribution in contrsat 
with the Rossler attractor case where high-amplitude discrete 
peaks are observed at the distribution frontiers. We may assume 
that such differences result from the fact that the copper map is 
not perfectly 1D but is built from a 1D ideal behavior on which 
a noisy component is superimposed. This noisy component in 
particular produces the tails in Figure 13b, associated with zones 
on the periphery of the attractor which are rarely visited. Such 
zones are also visible in the symbolic plane in the range [xo,Xu] 
of Figure 12. We shall return to this point later to  give better 
support for this assumption. 

3. Template. Topological characterization of the copper 
attractor may now be achieved. According to the first-retum 
map to the Poincar6 section P, the template is constituted by 
two stripes: one stripe whose local torsion is even and which 
is associated with the increasing branch 0 and one stripe whose 
local torsion is odd and which is associated with the de- 
creasing branch. From the inspection of the attractor in a 3D 
phase space, it is found that the two stripes are organized as 
displayed in Figure 14. Stripe 0 is found without any local 
torsion, and stripe 1 is found with a +n twist, Le., like a so- 
called Mobius band. 

M = (  0 0  ) 
0 +1 

The template is now checked by counting the oriented 
crossings of a few orbit couples on a plane projection. We use 
(10,l) and (1011,lO) couples. Linking numers L(10,l) and 
L(1011,lO) are found to be equal to +1 and +3, respectively 
(Figures 16a and 16b). 

By using the algebraic relation 16, we obtain 

1 
L(10,l) = p m 1 )  + M(1,O) + qay( lOJ ) l  

1 
2 

= -[1 + 0 + 11 = +1 

L(1011,lO) = $3M(l,l) + 4M(1,0) + M(0,O) (22) 

1 
2 

=-[3 + 0 + 0 + 31 = +3 

where Nlay( 1,lO) and Nlay( 101 1,lO) are the layering numbers 
obtained from the layering graphs displayed in Figures 16c and 
16d. Linking numbers counted on plane projections and in- 
duced by the template are equal, Le., the template is therefore 
checked. 

B. Reconstructed Model. Since the dynamics of the 
original attractor have now been characterized, the next goal is 
the reconstruction of a set of equations modeling the experi- 
mental behavior. In order to obtain a reconstructed global vector 
field, we apply the reconstruction method of section 1I.A to the 
data of the copper electrodissolution. As stated in section II.A, 
successive derivatives of the time series Z(t) are required. They 
are estimated by using the discrete Legendre filter with a 
window size 2, = 212. In order to obtain successful integrations 
of the reconstructed system, we found that the data set should 
be constituted by a trajectory which visits the periphery of the 
attractor. Typically, from any such a set, two kinds of dynamics 
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Figure 13. Comparison between the density computed from the copper 
attractor and the one computed from the Rossler attractor with an 
identical orbit spectrum, (a,b,c) = (0.422,2,4). As suggested by 
theoretical results, Rossler density presents two peaks on the limits of 
the invariant interval: these peaks provide a signature of the kneading 
sequence. Copper density suggests that limits of the invariant interval 
are not well defined. (a) Copper attractor. (b) Rossler attractor. 

Stripe o 0 upperface 
Stripe I 

lower face 

Figure 14. Two stripes are exhibited on the attractor: stripe 0 without 
local torsion and stripe 1 with a +z twist. No intersections are found 
between the two stripes. 

may be reconstructed: (i) a chaotic attractor with the driving 
vector (~,295,14,52,21~) (Figure 17); (ii) a limit cycle of period 
6 with the driving vector (~,470,61,51,21~) (Figure 18), Le., 
with a larger amount of data than for the chaotic attractor. This 
limit cycle is encoded by the sequence (100110) and, conse- 
quently, corresponds to the kneading sequence of the copper 
attractor. Here, the driving vectors are found by using an error 
function E, minimization as previously explained. 

It is not yet well understood how the quality of the 
reconstructed model depends on the reconstruction parameters. 
Nevertheless, it is shown45 that the amount of vectors used in 
the approximation may act as a control parameter on the 
dynamics. 

In our case, the limit cycle is reconstructed by using 470 net 
points sampled on about 8 pseudoperiods of the data series. 
During 6 of these pseudoperiods, the chaotic trajectory remains 
topologically very close to the period-6 limit cycle encoded by 
the sequence (1001 10). As (1001 10) is the kneading sequence 
of the copper attractor, in spite of the visual appearance, this 
periodic behavior is actually very close to the experimental one 
(in so far as a slight variation of the control parameter is 
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Figure 15. Template of the copper attractor. 

sufficient to pass from the chaotic behavior to the periodic 
behavior, and vice versa). 

The reconstructed chaotic attractor is obtained with 295 net 
points (a small amount of data indeed) sampled on about 21 
pseudoperiods of the data series. Those points are on a chaotic 
trajectory which sufficiently visits the attractor so that the driving 
vector (~,295,14,52,21~) permits reconstruction of a chaotic 
attractor which will be characterized and compared to the 
original one in the next section. 

Values of Kls generating the chaotic strange attractor are 
reported in Table 3. 

The reconstructed systems are integrated with an adaptative 
step integrator. The reconstructed chaotic attractor obtained by 
integrating the reconstructed vector field is displayed in Figure 
17. In the remainder of this paper, we call the copper attractor 
the chaotic attractor A, reconstructed by using the successive 
derivatives from experimental data and the reconstructed 
attractor the attractor AR generated by integrating the recon- 
structed vector field. 

In order to check the model generated by the reconstructed 
vector field, a complete analysis is now performed on the 
reconstructed attractor AR. 

1. Orbit Spectrum. The first-return map of the reconstructed 
attractor is computed on the same Poincark plane as for the 
copper attractor and is displayed in Figure 19. 

The map is a bit less developed than the original one. As 
should have been expected, the reconstructed map is one- 
dimensional, i.e., the thickness of the experimental Poincark 
section is completely removed. The population of periodic 
orbits is extracted and reported in the fourth column of Table 
2. All extracted periodic orbits are forced by the kneading 
sequence (10110) of AR. All sequences forced by this se- 
quence are found within the reconstructed attractor. The 
symbolic plane (Figure 20) then provides a pruning front, 
correctly estimated by a line, at Xa = 0.8450, which is in good 
agreement with the symbolic coordinate of the kneading 
sequence (0.8485). 

Also, the natural invariant density (Figure 21) of the map 
presents sharp peaks generated by the periodic points of the 
kneading sequence, as theoretically expected. 

We therefore observe that the orbit spectrum of the recon- 
structed attractor is pruned with respect to the copper attractor. 
Nevertheless, one must remark that the pruning front of the 
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Figure 16. Plane projections and layering graphs of two orbit couples. 
The lower bases of the layering graphs are built on the unimodal order 
while the upper base is obtained by reversing the order of periodic 
points of the stripe 1 since M(1,l) is odd. No permutating between 
periodic points of the stripe is required since M(1,O) is even. (a) L(10,l) 
= +l.  (c) L(1011,lO) = +3. (b) Nray( 10,l) = +l. (d) Nay( 101 1,lO) = +3. 
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Figure 17. Reconstructed attractor AR of the copper electrodissolution 
by integrating the reconstructed vector field driven by the vector 
(t,295,14,52,21t); projection in the X Y  plane. 
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X 
Figure 18. Reconstructed limit cycle of the copper electrodissolution 
by integrating the reconstructed vector field drived by the vector 
(t,470,61,51,21t); projection in the X Y  plane. The limit cycle is 
encoded by (100110). 

reconstructed attractor (0.8450) is very close to the limit of the 
well-visited zone (0.8420) in the symbolic plane of the copper 
attractor. Indeed, the orbit spectrum found within the recon- 
structed attractor is identical to the one corresponding to the 
well-visited zone of the copper attractor. 

We now recall that the reconstructed system is extracted 
from experimental data and that there are several factors 
which complicate the reconstruction problem from experiment- 
al data:I6 (i) Observational noise, the measuring instrument 
may be noisy; we actually observe a time series Z(t) given by 

Z(t) = ?(t) + ( ( t )  (23) 

where I(t) is the true value and &t) is noise. (ii) Dynamic 
noise, external influences may perturb the dynamics; the evo- 
lution of the system is not only deterministic but also possesses 
a stochastic component. This kind of noise is numerically well 
simulated by a multiplicative noise as follows 

where x is the state vector, f the vector field, and g(t) is noise. 
(iii) Estimation error, with a finite amount of data, the 
reconstructed vector field is an estimation which never can be 
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Figure 19. First-retum map on the PoincarC section P of the 
reconstructed attractor AR. 

TABLE 3: Values of Kls Given by a Reconstruction Driven 
by the Vector (z, 295, 14, 52, 212); Integration of the 
Reconstructed System Generates a Chaotic Attractor 

1 Ki 1 Ki 
1 0.121 970539498 1005 27 -0.145539951745097 
2 -1.078249529843902 x 28 0.1049018763188871 
3 0.9125082050943352 29 12.14985173080021 
4 -3 1.5804652088144 30 -38.5366235437547 
5 2.8821 19184023051 x 31 0.3809613670493999 
6 -0.107945627123624 32 2.19570526400687 
7 3.1426 101 9012943 33 2 1.5525408 1698994 
8 -2.58142102535676 34 165.1484278847694 
9 30.7789877436226 35 - 1437.72802782965 

10 180.3217927930279 36 7.928626337606531 x 
11 -5.550910841337609 x lo-’ 37 5.752046655223851 x lo-’ 
12 4.625376454207544 x 10 
13 -0.114822275266309 
14 0.21 2165071465 1616 
15 -2.241 245058 14 176 
16 - 13.6799701248913 
17 3.60656873135868 
18 -6.67239615224999 
19 -287.70105676069 

-3 38 -1.081602890433014 x 
39 4.628712833151052 x 
40 -3.976058731703460 x 
41 -2.626758361863347 x 
42 1.437994615429103 x 
43 1.753989520753347 x 
44 -0.126567212485869 
45 0.3435285584041 194 

20 l083.03060l67 1911 16  -5.1 16362209078044 x lo-’ 
21 -7.71 1227398599053 x 47 -3.788259242947936 x IO-’ 
22  -8.541800526483852 x IO-‘ 18 -0.572245746550728 
23 1.83301 1097559745 x IO-’ 49 -4.14596569136184 
24 -5.532917786559483 x I O - ?  50 23.99099286766239 
25 5.276461759803511 x IO-* 51 -8.936897340164367 x IO-’ 
26 0.3335 1 12218727262 52 -0.164973703 I76679 

perfect; with the true vector field f being unknown, the 
estimation error is furthermore somewhat difficult to eval- 
uate. 

In the case of the copper experiment, the resolution of the 
data acquisition board is of 4096, i.e., the measuring instrument 
error is 1 part in 4096 and can be safely neglected. 

In contrast, it is well known that intrinsic (dynamic) noise 
acts as a disordering field.43 As a matter of fact, integrating 
the Rossler system (with the control parameters (a,b,c) = 
(0.340,2,4) which correspond to the period-2 limit cycle of the 
period-doubling cascade) with a multiplicative noise (signal/ 
noise ratio of 44 dB) provides a rather well-developed chaos.45 
Thus, small dynamic perturbations may have a great influence 
on the dynamics of a system. 

As shown by Crutchfield et aZ.,43 dynamic noise perturbs the 
natural invariant density by removing the sharp peaks produced 
at the iterates of the critical point, supporting the assumption 
discussed at the end of section III.A.2. This behavior is 
illustrated by taking the example of the Rossler system. 

Pruningfront 
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Figure 20. Symbolic plane of the reconstructed attractor. Pruning 
front is found at X ,  = 0.8450 and is suitably estimated by a line; 
dynamics is governed by the unimodal order. 
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Figure 21. Natural invariant density. Each peak is labeled following 
the symbolic dynamics; sequences (1011;) of the couple created by a 
saddle-node bifurcation is exhibited. 
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Figure 22. First-return map of the Rossler attractor whose orbit 
spectrum is forced by the sequence (101 10). 

We start from a Rossler attractor whose orbit spectrum is 
the same as the reconstructed attractor one, Le., with (101 10) 
as the kneading sequence. Such an attractor is obtained for 
(a,b,c) = (0.401,2,4). The first-retum map is displayed in Figure 
22. 

We afterward integrate the Rossler system ((a,b,c) = 
(0.401,2,4)) with a multiplicative noise as defined by rela- 
tion 24 with a signal/noise ratio of 64 dB. The first-return 
map (Figure 23) now exhibits a significant thickness and 
presents more developed branches than the clean one (Figure 

The symbolic plane is computed (Figure 24). The maximum 
xu coordinate is found to be equal to 0.9166 (against 0.8485 
without any noise) and the pruning front is not well defined by 

22). 
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Figure 23. First-retum map of the Rossler system (a = 0.401) 
integrated with a multiplicative noise of 64 dB. 
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Figure 24. Symbolic plane of the noisy Rossler attractor (a = 0.401, 
Sb zz 64 dB): a low-visited zone is exhibited as on the symbolic plane 
of the copper dynamics. 
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Figure 25. Natural invariant density 0-y) of the noisy Rossler system. 
Sharp peaks are removed bv the action of the noise and the tails of the . .  
distribution are not well defined, 

a line. Moreover, a rarely-visited zone appears in the range 
0.8598 < xu < 0.9166. The rarely-visited zone on the copper 
attractor is in the range 0.8420 < xu < 0.9250. The symbolic 
plane of the noisy Rossler attractor may therefore favorably 
compare with the copper attractor symbolic plane. Chaos is 
then developed on the noisy Rossler system in a way very simi- 
lar to that of the copper attractor chaos. This is further supported 
by examining the natural invariant density of the noisy Rossler 
attractor (Figure 25) which is indeed well reminiscent of the 
one displayed for the copper experimental data in Figure 13b. 

Also, the reconstructed vector field has been integrated 
with a multiplicative noise (relation 24) with the signal/ 
noise ratio equal to 44 dB. The trajectory now visits the cen- 
ter of the copper attractor (Figure 26). In particular, the 
small loop in the hole of the attractor of Figure 26 which 
is present too in the experimental copper attractor (Figure 

-0.3 ' 1- 

Figure 26. Attractor generated by the integration of the reconstructed 
global vector field with a multiplicative noise (signalhoise ratio equal 
to 44 dB). 
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Figure 27. XY plane projection of the couples of periodic orbits. (a) 
L(10,l) = '/2(+2) = +l .  (b) L(1011,10) = '/2(+6) = +3. 

10) and on the kneading orbit of Figure 18 is never ob- 
served in the chaotic reconstructed attractor without any 
noise (Figure 17). 

We therefore conclude that the copper attractor favorably 
compares to a Rossler attractor whose orbit spectrum is forced 
by the kneading sequence (101 10) with a stochastic component 
modeled by a multiplicative noise of the order of 64 dB. 

2. Template Validation. The relative organization of the 
periodic orbits obtained from the reconstructed model must now 
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be checked against the copper template. This is achieved with 
the two previously used couples of orbits, namely (10,l) and 
(1011,lO). Linking numbers L(10,l) (Figure 27a) and 
L(1011,10) (Figure 27b) are found to be equal to +I and +3, 
respectively. They are therefore equal to the ones predicted by 
the template of the copper attractor (relation 22). The recon- 
structed model is therefore topologically compatible with the 
data. 

IV. Conclusion 

We have demonstrated how vector field reconstruction can 
be applied to chaotic data from an electrochemical reaction, the 
electrodissolution of copper in phosphoric acid. A set of 
ordinary differential equations (ODE) has been generated in this 
manner, and this set is a model of the underlying physical 
system. The ODE set can be used to extract information about 
the dynamics of the process. Other methods are available to 
approximate the long-term dynamics of continuous time systems. 
Many of these approaches employ discrete maps with local 
l i nea r i~a t ion '~ -~~  or A N N S ; ~ ~ , ~ ~  ANN coupled with a simple 
integrator scheme has also been empl~yed .~  

Acknowledgment. This work was supported in part by the 
National Science Foundation and by ARPNONFL 

References and Notes 
(1) Hudson, J. L.; Tsotsis, T. T. Electrochemical Reaction Dynamics: 

A Review. Chem. Eng. Sci. 1994,49 (lo), 1493-1572. 
(2) McAvoy, T. J.; Wang, N. S.; Naidu, S.; Bhat, N. V.; Gunter, J.; 

Simmons, M. Interpreting Biosensor Data via Back Propagation; Proc. Int. 
Joint Conf. Neural Networks: Washington, DC, 1989; Vol. 1, pp 227- 
233. 

(3) Hudson, J. L.; Kube, M.; Adomaitis, R. A.; Kevrekidis, I. G.; 
Lapedes, A. S.; Farber, R. M. Nonlinear Signal Processing and System 
Identification: Applications to Time Series from Electrochemical Reaction. 
Chem. Eng. Sci. 1990, 45 (8), 2075-2081. 

(4) Rico-Martinez, R.; Krischer, K.; Kevrekidis, I. G.; Kube, M. C.; 
Hudson, J. L. Discrete- vs Continuous-Time Nonlinear Signal Processing 
of Cu Electrodissolution Data. Chem. Eng. Commun. 1992, 118, 25-48. 

( 5 )  Otawara, K.; Fan, L. T. Synchronizing Chemical Chaos with an 
Artificial Neural Network. Submitted to J .  Phys. Chem. 

(6) Jacquet, P. Bull. SOC. Chim. Fr. 1936, 3, 307. 
(7) Glarum, S. H.; Marshall, J. H. The Anodic Dissolution of Copper 

into Phosphoric Acid. J.  Electrochem. SOC. 1985, 132, 2872. 
(8) Tsitsopoulos, L. T.; Tsotsis, T. T.; Webster, I. A. An Ellipsometric 

Investigation of Reaction Rate Oscillations During the Electrochemical 
Anodization of Cu in Phosphoric Solutions. Some Preliminary Results. 
Surf. Sci. 1987, 191, 225. 

(9) Albahadily, F.; Schell, M. J .  Chem. Phys. 1988, 88, 4312. 
(10) Albahadily, F. N.; Ringland, J.; Schell, M. J .  Chem. Phys. 1989, 

(11) Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S. 

(12) Crutchfield, J. P.; McNamara, B. S.  Equations of motion from a 

(13) Farmer, J. D.; Sidorowitch, J. J. Phys. Rev. Lett. 1987, 59, 845. 
(14) Agarwal, A. K.; Ahalpara, D. P.; Kaw, P. K.; Prablakera, H. R.; 

Sen, A. Model Equations from a chaotic time series. J.  Phys. 1990, 35 
(3), 287-301. 

(15) Breeden, J. L.; Hiibler, A. Reconstructing Equations of motion from 
Experimental Data with Hidden Variables. Phys. Rev. A 1990, 42 (lo), 

(16) Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J. State Space 

(17) Giona, M.; Lendini, F.; Cimagalli, V. Phys. Rev. A 1991, 44, 

90, 813. 

Geometry from a time series. Phys. Rev. Leri. 1980, 45 (9), 712-716. 

data series. Complex Syst. 1987, I ,  417-452. 

58 17-5826. 

Reconstruction with Noise. Physica D 1991, 51, 52-98. 

3496. 

J. Phys. Chem., Vol. 99, No. 18, 1995 7027 

(18) Gouesbet, G. Reconstruction of the vector fields of continuous 
dvnamical svstems from numerical scalar time series. Phvs. Rev. A 1991, 
43 (io), 53ii-5331. 

(19) Gouesbet. G. Reconstruction of Standard and Inverse Vector Fields 
Equivalent to a Rossler system. Phys. Rev. A 1991, 44 (lo), 6264-6280. 

(20) Palus, M.; Dvorhck, I. Singular-value Decomposition in Attractor 
Reconstruction. Pitfalls and Precautions. Physica D 1992, 55, 221-234. 

(21) Gouesbet, G. Reconstruction of Vector Fields: the Case of Lorenz 
System. Phys. Rev. A 1992,46 (4). 1784-1796. 

(22) Gouesbet, G.; Maquet, 1. Construction of phenomenological models 
from numerical scalar time series. Physica D 1992, 58, 202-215. 

(23) Gouesbet, G.; Letellier, C. Global vector field reconstruction by 
using a multivariate polynomial Lz-approximation on nets, Phys. Rev. E 
1994, 49 (6), 4955-4972. 

(24) Letellier, C.; Gouesbet, G. Equivalences between original and 
reconstructed strange attractors in the case of 3D differential embeddings. 
Submitted to Chaos. 

(25) Gibson, J. F.; Farmer, J. D.; Casdagli, M.; Eubank, S. An Analytic 
Approach to Practical State Space Reconstruction. Physica D 1992, 57, 
1-30. 

(26) Brown, R.; Rulkov, N. F.; Tracy, E. R. Modelling time series data 
and synchronizing chaotic systems. Preprint, 1993. 

(27) Mindlin, G. B.; Hou, X. J.; Solari, H. G.; Gilmore, R.; Tufillaro, 
N. B. Classification of Strange Attractors by Integers. Phys. Rev. Lett. 1990, 
64 (20). 2350-2353. 

(28) Tufillaro, N. B.; Abbott, T.; Reilly, J. An Experimenral Approach 
to Nonlinear Dvnamics and Chaos: Addison-Weslev: New York, 1992. 

(29) Rossler: 0. E. An equation for Continuous Chaos. Phys. Lett. 1976, 
57A ( 5 ) .  397-398. 

(30) Birman, J. S.; Williams, R. F. Knotted periodic orbits in dynamical 
systems: Lorenz's equations. Topology 1983, 22 (l), 47-82. 

(31) Melvin, P.; Tufillaro, N. B. Templates and Framed Braids. Phys. 
Rev. A 1991, 44 (6). 3419-3422. 

(32) Letellier, C.; Dutertre, P.; Maheu, B. Unstable periodic orbits and 
templates of the RBssler system: toward a systematic topological charac- 
terization. Chaos 1994, 4 (4). 

(33) Collet, P.; Eckmann, J. P. Iterated maps on the interval as dynamical 
systems. Progress in Physics; Jaffe, A,, Ruelle, D., Eds.; Birkhauser: 
Boston, 1980. 

(34) Hall, T. The creation of Horseshoes. Nonlinearity 1994, 7(3), 861- 
924. 

(35) Tufillaro, N. B.; Wyckoff, P.; Brown, R.; Schreiber, T.; Molteno, 
T. Topological time series analysis of a string experiment and its 
synchronized model. Preprint, July 31, 1994. 

(36) Fang, H. P. Dynamics of strongly dissipative systems. Phys. Rev. 
E 1994,49 (6), 5025-5031. 

(37) Le Sceller, L.; Letellier, C.; Gouesbet, G. Algebraic evaluation of 
linking numbers of unstable periodic orbits in chaotic attractor. Phys. Rev. 
E 1994, 49 (5 ) ,  4693-4695. 

(38) Mindlin, G. B.; Solari, H. G.; Natiello, M. A.; Gilmore, R.; Hou, 
X. J. Topological Analysis of Chaotic Time Series Data from the Belousov- 
Zhabotinski. J. Nonlinear Sci. 1991, I ,  147-173. 

(39) Coullet, P.; Tresser, C. Itkrations d'endomorphismes et groupe de 
renormalisation. J .  Phys. 1978, 8 (39), C5-25, Colloque C5, supplkment. 

(40) Feigenbaum, M. J. Quantitative Universality for a Class of 
Nonlinear Transformation. J .  of Stat. Phys. 1978, 19 (l), 25-52. 

(41) Fei, Z.; Hudson, J. L.; Kelly, R. G. J. Electrochem. SOC. 1994, 141 
(9), L123. 

(42) Grassberger, P.; Proccacia, I. Measuring the Strangeness of Strange 
Attractors. Physica D 1983, 9, 189. 

(43) Crutchfield, J. P.; Farmer, J. D. Fluctuations and simple chaotic 
dynamics. Phys. Rep. 1982, 92 (2), 45-82. 

(44) Ott, E. Chaos in dynamical system; Cambridge University Press: 
Cambridge, 1993. 

(45) Letellier, C. Caractkrisation topologique et reconstruction d'anracteurs 
&ranges, Ph.D. Thesis, LESP, Rouen, 1994. 

(46) Kostelich, E. J.; Yorke, J. A. Noise Reduction: Finding the Simplest 
Dynamical System Consistent with the Data. Physica D 1990, 41, 183- 
196. 

(47) Lapedes, A. S.; Farber, R. F. Nonlinear Signal Processing Using 
Neural Networks: Prediction and System Modeling. Los Alamos Report, 

(48) Casdagli, M. Nonlinear Prediction of Chaotic Time Series. Physica 
LA-UR 87-2882, 1987. 

D 1989, 35, 335-356. 

JP942973P 


