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Dressed symbolic dynamics
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A strange attractor~SA! with symmetry groupG can be mapped down to an image strange attractor SA
without symmetry by a smooth mapping with singularities. The image SA can be lifted to many distinct
structurally stable strange attractors, each equivariant underG, all with the same image SA. If the symbolic
dynamics of the image SA requiress symbolss1 ,s2 , . . . ,ss , then uGus symbols are required for symbolic
dynamics in the covers, and there areuGus distinct equivariant covers. The covers are distinguished by an index.
The index is an assignment of a group operator to each symbols i :s i→ga i

. The subgroupH,G generated by
the group operatorsga i

in the index determines how many disconnected components (uGu/uHu) each equiva-
riant cover has. The components are labeled by coset representatives fromG/H. The structure of each con-
nected component is determined byH. A simple algorithm is presented for determining the number and the
period of orbits in an equivariant attractor that cover an orbit of periodp in the image attractor. Modifications
of these results for structurally unstable covers are summarized by an adjacency diagram.
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I. INTRODUCTION

Many physical systems exhibit a symmetry. These inclu
quantum systems that are invariant under complex conju
tion @C(x,t)→C* (x,t)#, electromagnetic systems that a
invariant under field reversal@E(x,t)→2E(x,t)#, and fluid
systems that are unchanged under reversals of the vel
vector field@u(x,t)→2u(x,t)#. Three of the four most stud
ied three-dimensional systems are truncations of electrom
netic ~Duffing, van der Pol! or fluid ~Lorenz! models, and
exhibit twofold symmetries.

When particular variables are monitored, for example,
probability P(x,t)5uC(x,t)u2 or the intensity I (x,t)
5E(x,t)•E(x,t), information about the symmetry is lost.
the dynamics is chaotic, then the strange attractor rec
structed from these observables will have a lower symm
than a strange attractor reconstructed from the most fun
mental variables@e.g., C(x,t),E(x,t)] @1,2#. For example,
the strange attractor constructed from theZ variable of the
Lorenz dynamical system is a 2→1 image of strange attrac
tors constructed from either theX or Y variable@3#. Similar
statements hold for strange attractors constructed from v
ables in the van der Pol~rotating! plane of either the Duffing
or van der Pol oscillators, compared with strange attrac
constructed from theX or Y variable intrinsic to these two
driven dynamical systems@4#.

It is important to understand the spectrum of strange
tractors, with a given symmetry, that is compatible with
observed attractor with lower symmetry or no symmetry
all. It is a surprising result that many different strange attr
tors, all with the same symmetry, are compatible with
observed strange attractor with lower symmetry. By ‘‘co
patible’’ we mean that the attractors with and without sy
metry are related by a local diffeomorphism with the spe
fied symmetry. When the symmetry involves a rotation ax
the different strange attractors, all with the same rotat
symmetry, that cover a particular image attractor~without
symmetry! are distinguished by topological indices@1#.
1063-651X/2003/67~3!/036205~10!/$20.00 67 0362
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In this work, we show that the inequivalent covers of
image dynamical system are distinguished among th
selves by a set of indices. The indices are the operation
the symmetry group. Each symbol encoding an orbit in
image attractor is assigned an index~group label!. Each dif-
ferent assignment corresponds to a different covering att
tor. All covering attractors possess the same symmetry.
illustrate these ideas by applications to two different symm
try groups with four group elements acting in thre
dimensional phase spaces. Extensions to other symm
groups, both commutative and noncommutative, and
higher-dimensional phase spaces, are straightforward.

In Sec. II, we introduce these two groups and discuss t
action in R3. In Sec. III we describe how they are used
decompose the phase space into symmetry-related dom
each identified by a group element. In Sec. IV, we descr
the properties of the dynamical system equations for
cover and image dynamical systems. Cover and image at
tors are characterized by their branched manifolds in Sec
and the scheme for indexing the covering attractors is in
duced in Sec. VI. The spectrum of covering attractors for
two symmetry groups is presented and described in Sec.
We describe structurally unstable covering attractors in S
VIII. Finally, we conclude with a number of remarks an
observations.

II. GROUPS

At the abstract level there is one group of order two, o
group of order three, and two groups of order four. T
group of order two has one generatorA and obeys the rela
tion A25I. The group of order three has one generatorA and
obeys the relationA35I. One of the two order-four group
has one generatorA that obeysA45I. The other order-four
group has two generatorsA andB, and obeys the three rela
tions A25B25I andAB5BA @5#.

The group of order two has three different inequivale
faithful representations in the three-dimensional phase sp
©2003 The American Physical Society05-1
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R3. The generators have matrix representations

sZ RZ~p! P

F 1 0 0

0 1 0

0 0 21
G F 21 0 0

0 21 0

0 0 11
G F 21 0 0

0 21 0

0 0 21
G

These generators describe the group of reflections in theX-Y
plane Z50 (sZ), rotations throughp radians about theZ
axis @RZ(p)#, and spatial inversions (P). The operatorsZ
leaves invariant theX-Y planeZ50. As a result, any double
cover with sZ symmetry must be disconnected, with o
component in the upper half spaceZ.0 and the mirror im-
age in the lower half spaceZ,0. By contrast, the invarian
set of RZ(p) is one dimensional (Z axis! and that ofP is
zero dimensional~the origin!. These lower-dimensional in
variant sets do not provide any obstructions to connec
covers withRZ(p) symmetry orP symmetry@1#.

The unique order-three group has a single faithful rep
sentation inR3. The generatorA describes a rotation by
2p/3 radians about theZ axis.

The cyclic order-four groupA (A45I) has two faithful
representations inR3, C4 andS4, whose generators are give
by

C45F 0 1 0

21 0 0

0 0 1
G ,

S45sZC45F 0 1 0

21 0 0

0 0 21
G .

The generatorC4 describes rotations by 2p/4 radians about
theZ axis andC4

45I. The generatorS4 describes rotations by
2p/4 radians about theZ axis, followed by reflection in the
Z50 plane:S4

45I. We treat below only the first of these tw
representations.

For the other abstract four-element groupV4 ~Vier
gruppe!, the three group operationsA, B, AB, represent ro-
tations byp radians about theX, Y, andZ axes. The matrix
representations of these operators are

A5RX~p! B5RY~p! AB5RZ~p!

F 11 0 0

0 21 0

0 0 21
G F 21 0 0

0 11 0

0 0 21
G F 21 0 0

0 21 0

0 0 11
G

The invariant set is the union of the three rotation axes. T
does not provide an obstruction to the connectedness o
covering attractor. As a result, fourfold covers of an ima
attractor may have a single component, two disti
symmetry-related covers, or four disjoint covers, each id
tical to the image attractor. Four-group action of this type h
been observed in a fluid model@6#.
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Since the two groups are Abelian, the group multiplic
tion properties are summarized by their character tables@5#:

C4 I C4 C4
2 C4

3 Basis vectors

G1 1 1 1 1 1,Z,X21Y2,X426X2Y21Y4,
4X3Y24XY3

G2 1 i 21 2 i X1 iY,(X2 iY)3

G3 1 21 1 21 X22Y2,XY
G4 1 2 i 21 i X2 iY,(X1 iY)3

V4 I RX RY RZ Basis vectors

G1 1 1 1 1 1,X2,Y2,Z2,XYZ
G2 1 1 21 21 X,YZ
G3 1 21 1 21 Y,ZX
G4 1 21 21 1 Z,XY

For the two cases, the basis vectors for the irreducible r
resentations are listed. In particular,~a! the basis vectors for
the identity representationG (1) are the fundamental invarian
polynomials;~b! the basis vectors for the other represen
tions are the appropriate variables for the equivariant
namical system equations.

III. SPATIAL DOMAINS

The three-dimensional phase spaceR3(X,Y,Z), in which
the equivariant dynamics occurs, can be partitioned intouGu
symmetry-related domains. Each domain is mapped onto
other by one of the symmetry group operations. It is poss
to identify one domain~the fundamental domain! with the
identity group operation. Then each of the other domains
be labeled by a different group operation. Each of theuGu
symmetry-related domains inR3(X,Y,Z) is mapped in a
one-to-one way onto the phase spaceR3(u1 ,u2 ,u3) that sup-
ports the image dynamics.

The groupC4 is distinguished by its rotation~Z! axis. It is
useful to choose the fundamental domain as the union of
two octants (111)ø(112), where, for example,
(112) means the set of pointsX.0,Y.0,Z,0. The re-
maining three domains are obtained from this domain by
action of the three remaining group operationsC4 ,C4

2 ,C4
3 on

the fundamental domain:

Domain label Domain

I (111)ø(112)

C45RZSp2D (211)ø(212)

C4
25RZ(p) (221)ø(222)

C4
35RZS3p

2 D (121)ø(122)

The groupV4 is distinguished by three mutually perpe
dicular rotation axes. These are equivalent under the gr
C3 generated by rotations about the~1,1,1! axis through 2p/3
radians. As a result, the decomposition into domains m
5-2



el
s

b
w
on

u
th
do
tin

in
tio

.

p

DRESSED SYMBOLIC DYNAMICS PHYSICAL REVIEW E67, 036205 ~2003!
show an appropriate symmetry among the domains lab
by the three rotations. For these reasons, we choose a
fundamental domain the noncontiguous union (111)ø
(222). The domain decomposition forV4 is

Domain label Domain

I (111)ø(222)
RX(p) (122)ø(211)
RY(p) (212)ø(121)
RZ(p) (221)ø(112)

For later purposes, when we discuss structurally unsta
covers, it is useful to know which domains are adjacent. T
domains are adjacent when they share a two-dimensi
surface@e.g., (111) is adjacent to (211)]. This infor-
mation can be summarized by an adjacency diagram. In s
a diagram, each domain is represented by a small circle
is labeled by a group operation. Adjacency between two
mains is indicated by connecting the circles representa
the domains. The adjacency diagrams forC4 andV4 are pre-
sented in Fig. 1.

Individual group operations act to permute the doma
among themselves in a way unique to each group opera
As a result, the domains~their group labels! serve to provide
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a basis set for a faithfuluGu3uGu representation of the group
This is just the regular representation@5# described as

gagi5gjG j i
Reg ~ga!,

where

G j i
Reg ~ga!5

0

1
if

gjÞgagi

gj5gagi .

For V4, the 434 matrix representatives of the four grou
operations are

FIG. 1. Adjacency diagrams for the four domains inR3(X,Y,Z)
under the group~a! C4 and ~b! V4.
I RX RY RZ

I
RX

RY

RZ

F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G F 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

G F 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

G F 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

G

r

of
IV. EQUIVARIANT AND INVARIANT EQUATIONS

The equations describing a dynamical system with sy
metry groupG must be unchanged~equivariant! under the
operations ofG. To this end, not all of the basic variable
X,Y,Z can be basis vectors for the identity representat
G (1)(G).

For the groupC4 , Z transforms under the identity repre
sentation, but the linear combinationsX6 iY do not. The
equivariant equations have the formd(X6 iY)/dt5(X
6 iY) f 161(X7 iY)3f 26 , dZ/dt5 f Z , where the functions
f 16 , f 26 , f Z depend only on the invariantsX21Y2, X4

26X2Y21Y4, 4X3Y24XY3. These equations, and the im
age equations without symmetry, have previously been
scribed@1,3#.

For the groupV4 none of the three variablesX,Y,Z trans-
forms under the identity representation. The most gen
three-dimensional system equivariant underV4 has the form
-

n

e-

al

d

dt F X

Y

Z
G5F a1X1b1YZ

a2Y1b2ZX

a3Z1b3XY
G . ~1!

The coefficientsa i , b i are generally functions of the fou
invariant polynomialsX2, Y2, Z2, XYZ.

For V4 a 4→1 local diffeomorphism that maps each
the four domains inR3(X,Y,Z) ontoR3(u1 ,u2 ,u3) is given
by the transformation

u15 1
2 ~X22Y2!,

u25 1
2 ~X21Y222Z2!,

u35XYZ. ~2!

The image~or reduced! dynamical equations are
5-3
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d

dt F u1

u2

u3

G5
]ui

]Xj

dXj

dt

5F X 2Y 0

X Y 22Z

YZ ZX XY
GF a1X1b1YZ

a2Y1b2ZX

a3Z1b3XY
G . ~3!

The Jacobian is noninvertible on the singular set

detF ]ui

]Xj
G52~X2Y21Y2Z21Z2X2!50. ~4!

This set is the union of the three rotation axes: theX, Y, and
Z axes.

The image equations are obtained by multiplying out
matrices or the right hand side of Eq.~3!, for example,

du1

dt
5a1X22a2Y21~b12b2!XYZ. ~5!

However, the equivariant variables must be expressed
terms of the new invariant variablesu1 ,u2 ,u3. This is gen-
erally not possible until a fourth invariant is introduced:r 4
5 1

2 (X21Y21Z2). The three invariantsX2,Y2,Z2 are lin-
early related tou1 ,u2 ,r 4:

1

2 F X2

Y2

Z2
G5

1

6 F 3 1 2

23 1 2

0 22 2
GF u1

u2

r 4

G . ~6!

The equation of motion foru1 is

du1

dt
5~a11a2!u11

1

3
~a12a2!u21~b12b2!u3

1
2

3
~a12a2!r 4 . ~7!

The invariant polynomialsX2, Y2, Z2, XYZ satisfy a sixth-
degree equation~‘‘syzygy’’ !

~X2!~Y2!~Z2!2~XYZ!250. ~8!

As a result, the radicalr 4 ~second degree inX,Y,Z) satisfies
a cubic equation, which is

2@~u21r 4!229u1
2#~r 42u2!527u3

3 . ~9!

This means that the most general equations for theui have
the form

dui

dt
5(

r 50

2

f ir ~u1 ,u2 ,u3!r 4
r . ~10!

The fact that invariant images of equivariant equations g
erally depend on radical functions~e.g.,r 4) which are solu-
tions of nontrivial polynomial equations has greatly imped
03620
e
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-

d

the study of how covering dynamical systems can be c
structed from dynamical systems without symmetry.

In R3(X,Y,Z), the singular set of the groupC4 is the Z
axis, while that ofV4 is the union of theX, Y, andZ axes.
The image of the singular set ofC4 in R3(u1 ,u2 ,u3) is the
u35Z axis. The image of the singular set ofV4 consists of
three half-lines in theu350 plane. These half-lines are

X axis, u15u25
1

2
X2>0, u350,

Y axis, 2u15u25
1

2
Y2>0, u350,

Z axis, u252Z2<0, u15u350.

As long as the image attractor does not intersect the imag
the singular set inR3(u1 ,u2 ,u3), its lift under the inverse of
the transformation~3! is structurally stable. This means th
there is no change either in the number of periodic orbits
in their topological organization under a perturbation of t
rotation axes.

V. DESCRIPTION OF STRANGE ATTRACTORS

Strange attractors inR3 can be described and classified b
their branched manifolds@4#. The branched manifold tha
describes a common chaos-generating mechanism,
stretch-and-fold mechanism that creates a Smale horses
is shown in Fig. 2. This mechanism is frequently encou
tered in physical systems. In particular, the Ro¨ssler dynami-
cal system exhibits this mechanism for some parameter
ues.

This particular branched manifold has two branches,
beled 0 and 1, and one branch line. The branch line is pa
tioned into two subintervals labeled 0 and 1. Initial cond
tions on segment 0 of the branch line flow through branc
back to the full branch line; similarly for initial conditions o
the interval 1. The flow properties are summarized by a tr
sition matrixTi j , wherei indexes intervals of the branch lin
that act as initial conditions for the flow through branchi.
For the branched manifold shown in Fig. 2,

FIG. 2. Smale horseshoe branched manifold.
5-4
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0 1

T5
0

1 F1 1

1 1G . ~11!

Fourfold covers of branched manifolds withb branch
lines andn branches have 4b branch lines and 4n branches.
The 4b branch lines and 4n branches are mapped into ea
other by the operations of the symmetry group. In Fig. 3~a!
we show how the four branch lines of a fourfold cover of t
Smale horseshoe manifold may be organized in a structu
stable fourfold cover. One branch line is completely co
tained in the fundamental domainI5(111)ø(112).
The other three branch lines are completely contained in
other three domains, and can be labeled by an approp
group operation. In Fig. 3~b! we show a possible arrange
ment of the branch lines in a fourfold cover withV4 symme-
try of the Smale horseshoe branched manifold when
branch line occurs in the positive octant (111) of the fun-
damental domainI5(111)ø(222).

The transition matrices describing the flow in the fourfo
covering branched manifold are 838 matrices. These matri
ces are completely determined from a limited amount of
formation. Specifically, we must specify the destination~i.e.,
branch! of flows whose sources are in the branch intervals

FIG. 3. Possible arrangement of the branch lines in two differ
fourfold covers of the Smale horseshoe branched manifold.~a! C4,
~b! V4. In ~b!, dashed lines indicate that the branch line is below
Z50 plane. The width increases with distance from this plane.
03620
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the fundamental domain. We give one example each forC4
andV4 invariant fourfold covers.

ExampleC4. Assume that points in 0(I) flow back to the
branch labeledI, while points in 1(I) flow to the next
branch, labeledC4. Branch I is mapped to the remaining
three branches by the three group operationsC4 , C4

2, C4
3. As

a result,

0~C4!→C4 , 1~C4!→C4
2 ,

0~C4
2!→C4

2 , 1~C4
2!→C4

3 ,

0~C4
3!→C4

3 , 1~C4
3!→C4

45I.

The transition matrix for this cover is

~12!

ExampleV4. In this example, we assume 0(I)→RX and
1(I)→RY . The full flow information is obtained by moving
the branch line in the fundamental domain to the other th
branch lines using the other three group operations:

0~I!→RX , 1~I!→RY ,

RX :0~RX!→RXRX5I, 1~RX!→RXRY5RZ ,

RY :0~RY!→RYRX5RZ , 1~RY!→RYRY5I,

RZ :0~RZ!→RZRX5RY , 1~RZ!→RZRY5RX .

The transition matrix is easily constructed using this info
mation. It is transparent when expressed in terms of
‘‘dressed symbols.’’ These are the symbols required to
scribe the dynamics in the image attractor dressed with
operations in the groupG:

t

e

5-5
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It is clear from this that the entire transition matrix can
constructed from the diagonal blocks. The 16 distinct tran
tion matrices for the equivariant covers of the Smale hor
shoe are

~14!

with 1<a,b<4. These results are easily extended wh
more symbols are required, to other groups and to cov
where the image attractor has more than one branch line@4#.

In Fig. 4 we show three projections of a cover of t
Rössler attractor that hasV4 symmetry. This cover is struc
turally stable and is defined by the index 0→I, 1→RX . This
cover has two components. Only the component with bra
lines in domainRY andRZ is shown.

VI. LIFTS OF PERIODIC ORBITS

Periodic orbits embedded in an image strange attracto
to periodic orbits in its covering strange attractors. An or
of period p in the horseshoe attractor lifts to an orbit
periodp, 2p, or 4p in any fourfold cover. We illustrate with
a few examples.

Example 1.The orbit 101 lifts to two period-6 orbits in
the fourfold cover withC4 symmetry described by the tran
sition matrix ~12!. To show this, we repeat the symbol s
quence 101 several times, and dress each symbol with
labels. The first label identifies the source branch, the sec
identifies the sink~e.g., 0(I,I) , 0(C4 ,C4) , 1(I,C4) , etc.!. Begin-

ning on the branchI, we find

1(I,C4)0(C4 ,C4)1(C4 ,C
4
2)1(C

4
2 ,C

4
3)0(C

4
3 ,C

4
3)1(C

4
3 ,I) . ~15a!

The second label of symboli must be the same as the fir
label of the next symboli 11. As a result, dressed symbol
dynamics is equivalent to matrix multiplication by the su
matrices on the diagonal blocks of the transition matri
expressed in terms of the dressed symbols. The lift of
closes after 23356 periods~symbols!, when the first group
03620
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label in this sequence is equal to the last. A second, dist
but symmetry related lift of 101 is

1(C4 ,C
4
2)0(C

4
2 ,C

4
2)1(C

4
2 ,C

4
3)1(C

4
3 ,I)0(I,I)1(I,C4) . ~15b!

Thus, 101 is covered by two period-6 orbits in the fourfo
cover defined by the transition matrix~12!. By similar argue-
ments, 1011 lifts to a single period-16 orbit in this fourfo
cover.

Example 2.The orbit 101 lifts to two period-6 orbits in
the fourfold cover, withV4 symmetry defined by the trans
tion matrix ~13!. By using the arguments of Example 1, w
compute

1(I,RY)0(RY ,RZ)1(RZ ,RX)1(RX ,RZ)0(RZ ,RY)1(RY ,I) , ~16a!

1(RY ,I)0(I,RX)1(RX ,RZ)1(RZ ,RX)0(RX ,I)1(I,RY) .

~16b!

Remark.The matrix elements that occur in the compu
tions above occur in faithful representations of specific gro
operations. For example, in theV4 symmetric cover with
transition matrix~13!, the symbols 0,1 are represented
434 matrices

0→

I

RX

RY

RZ

F 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

G , 1→

I

RX

RY

RZ

F 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

G .

~17!

These matrices are faithful representations for the action
RX ~for 0! andRY ~for 1! on the four domains inR3(X,Y,Z).
As a result, information about the periodicity of orbits co
ering a periodp orbit can be reduced to a product of grou
operations, as follows:

C4 101→
C4 I C4 C4 I C4 •••

C4 C4 C4
2 C4

3 C4
3 I ••• .

In the top line we replace each symbol by its group label@cf.
~15a!#. Below this we provide the cumulative product. Th
computations become simpler if we assign a group value
5-6
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the basic symbol sequence: 101→C4IC45C4
2. Then (101)2

5I. For the symbol sequence 1011, we have 10
→C4IC4C45C4

3, so (1011)4 is closed in the cover.
In the general case, covers of orbits of periodp in an

image attractor are obtained by writing out the symbol
quence. Each symbol is replaced by an appropriate gr
operation, given by the index of the cover. The productgi is
computed, and the smallest positive integerk with the prop-
erty thatgi

k5I is determined. There areuGu/k covering orbits
of periodkp in the covering attractor of the original orbit o
periodp in the image attractor.

For lifts with V4 symmetry, the group operation assign
to any symbol sequence in the image is eitherI or RX , RY ,
or RZ . In the first, case a period-p orbit lifts to four period-

FIG. 4. Cover of the Ro¨ssler attractor withV4 symmetry. The
index is $0→I,1→RX%. Two disconnected covers exist. The o
shown here connects branch lines labeledRY and RZ . Its partner
connects the branches labeledI andRX .
03620
1
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p orbits. In the second case, a period-p orbit lifts to two
period-2p orbits. For example, 101→RYRXRY5RX , so 101
lifts to a pair of period-6 orbits.

Remark.The symbol sequence in the orbit~15b! is closely
related to the symbol sequence in orbit~15a!; similarly for
orbits ~16b! and ~16a!. The general relation is as follows
Assign to any symbol sequence in the image its appropr
group operationgi as described above. This group operati
generates a subgroupK5gi ,gi

2 , . . . ,I. One orbit in the
cover is obtained by starting in the fundamental domain a
assigning group labels to thep symbols of the image orbit
1I,C4

0C4 ,C4
1C4 ,C

4
2. If gi

1ÞI the nextp symbols are obtained

by multiplying each of the group operations bygi from the
left. If gi

2ÞI, the nextp symbols are obtained by multiplying
by gi

2 , etc. The symbolic names of symmetry-related orb
are obtained as follows. The subgroupK partitions G into
cosets. Forgi5C4

2 the two cosets ofC4 are $I,C4
2% and

$C4 ,C4
3%. The first orbit ~15a! starting in the fundamenta

domain corresponds to choosingI as a coset representativ
For the second orbit we choose a representative from
second coset: eitherC4 or C4

3. If we chooseC4, we multiply
all group operations in the first orbit byC4 on the left to
obtain the symmetric orbit. This maps orbit~15a! to ~15b!. If
we choose the other group operatorC4

3 as the coset represen
tative, this corresponds to starting the symbol sequence a
second triple@fourth symbol in orbit~15b!#. For the orbits
(16), gi5RX and the cosets are$I,RX% and $RY ,RZ%. The
coset representatives chosen areI for orbit ~16a! andRY for
orbit ~16b!. ChoosingRZ instead ofRY as the second cose
representative initiates orbit~16b! at the fourth symbol.

In Fig. 5 we show the period-3 saddle 101 and its part
node 100 in the Ro¨ssler attractor. They are lifted to coverin
orbits in the cover withV4 symmetry and indices 0→RY ,
1→RZ . Figure 6~a! shows the two period-6 covers of th
node ~100! in the covering attractor. Since 100→RZRYRY
5RZ , evolution during three periods maps a point on th
orbit in domainI to its image underRZ in domainRZ ~solid
line!. SinceRZ

25I, this cover orbit has period 6. The partn
period-6 orbit is shown dashed. It is obtained from the so
curve by operationsRY or RX . In Fig. 6~b! we show lifts of

FIG. 5. Period-3 orbits embedded within the Ro¨ssler attractor.
5-7
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FIG. 6. V4-fold cover with in-
dexes 0→RY,1→RZ of the
period-3 orbits shown in Fig. 5.
Covers of~a! ~100!, ~b! ~101!. In
both cases the covers consist
two symmetry-related period-6 or
bits.
in

bl
t o
ts

by
abel
fied
the saddle partner 101. For this orbit, 101→RZRYRZ5RY .
By a similar reason, there are two period-6 orbits cover
101. One mapsI to RY after three periods~solid!. The dashed
curve is obtained by rotating the solid curve byRX or RZ .
We remark that the covering attractor is structurally sta
and consists of one component, but covers of any orbi
periodp in the Rössler attractor consist either of four orbi
of periodp or two of period 2p ~not one of period 4p).
d
om

-
-

te
a
r
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VII. SPECTRUM OF COVERS

An equivariant cover of a strange attractor is defined
the group label assigned to each symbol and is used to l
orbits in the image attractor. For a strange attractor classi
by a branched manifold with two branches, there areuGu2

structurally stable covers withuGu-fold symmetry. For the
symmetry groupC4, these 16 distinctC4-invariant covers are
organized as follows:
al.
anch line.
The fourfold cover with index (0,1)→(I,I) consists of four disconnected pieces. The cover with index (0,1)→(I,C4
2)

consists of two disconnected pieces. Two branch lines,I andC4
2, are in one component while the other two,C4 andC4

3, lie in
the other component. The cover with index (0,1)→(C4

2 ,I) is dual to that with index (I,C4
2). Duality is defined by exchanging

the sinks for the two sources. The fourfold cover with index (0,1)→(C4
2 ,C4

2) also consists of two components. It is self-du
The remaining 12 covers are connected. For each there is a path in the attractor from any branch line to any other br
These 12 are divided into five dual pairs (C4

i ,C4
j )↔(C4

j ,C4
i ), iÞ j , i , j both not even, and two self-dual covers (C 4

i ,C 4
i ), i

51,3.
The 16 fourfold covers of the Smale horseshoe branched manifold withV4 symmetry are partitioned as follows:
s

ct
The cover (0,1)→(I,I) consists of four disconnecte
components. The next nine consist of two disconnected c
ponents. There are three dual pairs, (I,RX)↔(RX ,I), etc.,
and three self-dual covers, e.g., (RX ,RX). For example, the
cover with index (0,1)→(I,RZ) has one component contain
ing branch linesI andRZ , while the symmetry-related com
ponent~under eitherRX or RY) contains branch linesRX and
RY . Similarly for the self-dual cover, (0,1)→(RZ ,RZ). The
three covers with indices (I,RX), (I,RY), (I,RZ) are related
to each other by rotations about the (1,1,1) axis by 2p/3
radians, i.e., by the groupC3.

The remaining six covers consist of a single connec
component. There is a path in each of these branched m
folds from any branch line to any other branch line. The
-

d
ni-
e

are three dual pairs, such as (RX ,RY)↔(RY ,RX). In addi-
tion, the first three (RX ,RY), (RY ,RZ), (RZ ,RX) are
mapped into each other underC3, as are the last three in thi
list. If we regard the symmetry-related attractors~underC3)
as essentially equivalent, the breakdown of distin
V4-invariant covers of Smale horseshoe dynamics is

No. of
components

No. of
dual pairs

No. of
self-dual pairs

4 0 1(I,I)
2 1 (I,RX) 1 (RX ,RX)
1 1 (RX ,RY) 0
5-8
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In summary, there are six@523(01111)113(111
10)# topologically distinct types of fourfold covers of th
basic Smale horseshoe branched manifold withV4 symmetry.

For covers with four components, lifts of period-p orbits
consist of four disjoint period-p orbits, one in each compo
nent. For covers with two components, lifts of period-p or-
bits can be of periodp or 2p. For connected covers, lifts ca
be of periodp ~four of them! or 2p ~two of them!, but there
can be no orbits of period 4p. This is true because any orb
of periodp is assigned one of the four symbolsI, or RX , RY ,
RZ . In the first caseIk5I, k51, so the cover has periodp.
In the second caseRX

25I ~similarly for RY , RZ), sok52 and
the two covers have period 2p. This is illustrated in Fig. 6.
This clarifies the mystery reported in Ref.@7# that covering
orbits of period 4p are not observed in a connected struct
ally stable strange attractor withV4 symmetry.

Observation.In any of the equivariant covers describe
above, the branch lines that can be reached from the bra
line in the fundamental domain are exactly those labeled
group elements that can be obtained by multiplying the sy
bol indices in all possible orders. To put this another way,
symbol indices are generators of a subgroupH#G. One
component of the equivariant cover contains exactly
branch lines labeled by the elements of the subgroupH.
There are uGu/uHu components in the equivariant cove
These components can be labeled by the coset repres
tives of G/H.

VIII. STRUCTURALLY UNSTABLE COVERS

When the image of the singular set inR3(u1 ,u2 ,u3) in-
tersects the image attractor, the singular set intersects
equivariant covering attractor inR3(X). The intersection has
absolutely no effect on the image attractor but a profou
effect on the covering attractor. To be precise, the cove
attractor is structurally unstable. A perturbation of the loc
tion of the intersection changes the periodicity, structure,
organization of many unstable periodic orbits in the cov
The bifurcation due to this structural instability has be
named the peeling bifurcation@1#.

In the structurally unstable case, the flow from one of
intervals of the branch line in the fundamental domain
split into components that flow to two different branch lin
in adjacent domains. As an example, we consider a cove
the Smale horseshoe branched manifold withV4 symmetry
and index (0,1)→(I,RY). This cover has two disconnecte
components. Now we displace the image attractor so
branch 0 intersects the image of theZ axis u15u350, u2
<0. Then the flow from 0(I) is split between the branch lin
in the fundamental domain and the domainRZ . There is a
03620
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path from branch lineI to every other branch line. As a
result, the structurally unstable attractor is now connected
is labeled by the index (0,1)→(I,RZ1RY). After the u2
<0 axis passes through branch 0 to the space between
two branches, the cover becomes once again structu
stable, has index (0,1)→(RZ ,RY), and is connected. The
intersection of the half axisu15u350, u2<0 with branch 0
causes a global symmetry-restoring bifurcation. In this c
the bifurcation is summarized by

FIG. 7. Structurally unstable cover of the Ro¨ssler attractor with
V4 symmetry. The index is (0,1)→(I,RY1RZ).
Index ~0→I,1→RY! ~0→I1RZ ,1→RY! ~0→RZ ,1→RY!

structurally stable structurally unstable structurally stable ~18!
5-9
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Remark.In structurally unstable cases the flow is sp
between branch lines in adjacent domains~Fig. 1!. The con-
nectivity of the structurally unstable cover is determined
computing the subgroupH, now using all appropriate grou
labels. For example,H for (0,1)→(I,RY) is generated byI
andRY and is the two-element groupH5$I,RY%, whereas in
the structurally unstable case (0,1)→(I,RY1RZ), H is gen-
erated byI, RZ , RY and consists of all four group operation
H5$I,RX ,RY ,RZ%5G. In this case,uGu/uHu51 shows that
the cover has one connected component. A connected s
turally unstable cover with index (I,RY1RZ) is shown in
Fig. 7.

IX. REMARKS, SUMMARY, AND CONCLUSIONS

Strange attractors with no symmetry can be lifted
strange attractors with symmetry groupG. Many distinct in-
equivalent strange attractors, all with the same image, ca
equivariant under the symmetry groupG.

If s symbols suffice to uniquely describe all the unsta
periodic orbits in the image attractor,uGus symbols are re-
quired to label the periodic orbits in any of theG-equivariant
covering strange attractors. TheuGus symbols are labeled by
two indices: one is one of thes symbols necessary for sym
bolic dynamics in the image, the other is one of theuGu group
operations in the symmetry groupG. There areuGus distinct
covering strange attractors that are equivariant underG with
the same image attractor.

Symbolic dynamics in equivariant covers is easily carr
out. Each symbol from the image picks up two labels: o
indicates the source domain for the flow, the other indica
the target domain. Examples include 0(I,C4) and 1(RX ,RY).
If the targets for sources in the fundamental domain
known, targets for sources in the remaining domains are
termined by the group action. In fact, group operation pa
are matrix elements for faithful permutation~or regular! rep-
resentations of the group action on the spatial doma
These matrices are used to construct the transition matrix
each distinct cover. They therefore can be used to iden
the inequivalent covers. The identification is made by
index: the index is an assignment of a group operationga
PG to each symbols i in the symbol set for the image a
tractor,s i→ga i

.
Once an index is assigned, the structure and propertie

the equivariant cover are determined. The group operat
in the index generate a subgroupH#G. The number of dis-
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connected components in the equivariant cover isuGu/uHu. If
there is more than one component, they are labeled by c
representatives inG/H. The set of branch lines in the con
nected component containing the branch line in the fun
mental domain are labeled by the group elements ofH. The
structure of the remaininguGu/uHu21 components are deter
mined by multiplyingH by the coset representatives.

Covers of orbits of periodp in the image attractor are
obtained by writing out the symbol sequence~e.g., 101!.
Each symbol is replaced by its index@e.g., (101)
→RYRXRY when the index is (0,1)→(RX ,RY)] and the
product is taken to determine a group operationgiPG. This
single group operator generates a subgroupK#H of orderk
defined by the relationgi

k5I. An image orbit of periodp lifts
to uH/Ku orbits of periodpuKu in each of theuG/Hu discon-
nected components of theG-equivariant covering attractor.

Clearly, the structure of the groupG has a major influence
on the spectrum and properties ofG-equivariant covering at-
tractors. We have indicated these differences by using
groups of order four as examples. One has one generato
other has two generators. Many group results are immed
for example, ifG has two generators buts.2, no connected
structurally stableG-equivariant covers are possible. IfH has
two generators thenuH/Ku.1, so that each component of a
equivariant attractor contains at least two distinct disc
nected orbits that cover an image orbit. If the invariant se
G has too large a dimension~e.g.,sZ in R3), index assign-
ment is restricted and connected covering attractors are
possible.

Distinct covers exhibit dualities and may exhibit geom
ric equivalence. Structurally unstable covers involve gro
labels from adjacent spatial domains. Adjacency informat
is summarized in an ‘‘adjacency diagram’’~Fig. 1!.

These results are independent of the dimension of the
namical system, even though all results have been illustra
on three-dimensional dynamical systems. The results dep
on the symbolic dynamics in the image attractor and
structure of the equivariance groupG. Although the results
have been illustrated for commutative groupsG, they hold
without modifications for noncommutative groups as well
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