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Characterization of the Lorenz system, taking into account the equivariance of the vector field
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We characterize the chaotic attractors of the Lorenz system associated with R =28 and R=90 (re-

_ duced Rayleigh number) by using a partition that takes into account the equivariance of the vector field.

The population of unstable periodic orbits is extracted and encoded respectively with binary and three
letter symbolic dynamics. Templates are proposed for these R values.

PACS number(s): 05.45.+b

I. INTRODUCTION

In the past few years several works discussed the topo-
logical description of chaotic attractors. In particular,
the idea has arisen that an attractor can be described by
the population of periodic orbits, their related symbolic
dynamics, and their linking numbers [1]. In three dimen-

_sional cases, periodic orbits may be viewed as knots [2]
and, consequently, they are robust with respect to smooth
parameter changes and allow the definition of topological
invariants under isotopy. ‘

A topological analysis procedure may consist of a num-
ber of steps. A population of unstable periodic orbits is
first extracted from the flow. Then, the topological or-
ganization of the unstable periodic orbits is determined
by computing interlinking and self-linking numbers.
From such an analysis of a few small period orbits, a tem-
plate is built. This template can be used to predict the
linking numbers characterizing the orbits. The compar-
ison between template predictions and topological invari-
ant measurements provides a checking of the template
prediction. .

Although the case of asymmetric systems is well docu-
mented, such a topological characterization is not fully
understood for equivariant systems. For instance, the
Lorenz system template proposed by Mindlin et al. [1] is
not consistent with the Lorenz map [3]. However, the
Mindlin et al. template corresponds to another set of
control parameters, after the homoclinic explosion.
Indeed, this template is composed of two bands without
any local torsion, thus conflicting with the existence of
the decreasing monotonic branch of the Lorenz map (a
decreasing branch in a map must be associated with a
band whose local torsion is odd [2]). To solve this con-
tradiction, we propose an equivariant description of the
Lorenz attractor. A binary symbolic dynamics, based on
the Lorenz map, is used to encode all orbits extracted
from the attractor up to period 8 (for the reduced Ray-
leigh number R =28). An equivariant template is then
extracted and checked. Also, a three letter equivariant
dynamics is proposed for more developed chaos (R =90),
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allowing one to encode the population of unstable orbits.
The corresponding template is again extracted and
checked.

II. EQUIVARIANT CHARACTERIZATION
OF THE LORENZ SYSTEM

A; Vector field equivariance
A vector field f(A,x(t)) is equivariant if ‘
f(L,yx()=y (A, x(8)), (1)

in which x(¢) is a real-valued vector, ¢ is the time, A is a
parameter vector, f is a smooth vector-valued function,
and y is a matrix defining the equivariance.

The Lorenz system [3] with parameter vector
A=(R,o0,b) and variables x=(x,y,z), and the usual no-
tations, is equivariant with the equivariant matrix read-
ing

-1 0 O
y=]10 =1 0]. )
0 0 1 :

The Lorenz equivariant is a Z, symmetry, i.e., y>2=1
The Lorenz system remains unchanged if x is replaced by
VX, i.e., if x(¢) is a solution, then yx(¢) is also a solution.
Periodic orbits of the Lorenz system may be symmetric
or asymmetric (degenerate in Cvitanovic terminology [4])
with respect to the Z, symmetry. Symmetric orbits are
globally invariant under the action of ¥. Asymmetric or-
bits are mapped to their symmetric configuration and
therefore appear by pairs.

B. First-return maps

The strange chaotic Lorenz attractor for A=(28,10,%)
is organized around three fixed points Cy(x =y=z=0)
and

Ci(xi=i1/b(R ’__1)sy3t=xj:)z:i: =R _1) .

The Lorenz map reads M,, . ;=g(M,, ), in which M, is the
nth z maximum of the time series. These maximum
values may be obtained from the intersection of the tra-
jectory with two hypersurfaces T, and 2 _ defined by
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FIG. L. Flrst-return map from P, to itself: z(i+1) versus
z(i) (R=28).

of _

2= [(x,y,z)ER3 32 =0, a—<0 ,x 20,520 (3)

Each hypersurface is a Pomcare section. When con-
structing the Lorenz map, these sections are not dis-
tinguished as a consequence of the Z, symmetry. There-
fore, the map is constructed by using a Poincaré set
$=3,UZ_ rather than a Poincaré section. Rather
than using 2, and X _, it is numerically more convenient
to use the Poincaré sections P, and Py_ defined by

_ o :
Ba={(59,2)ER =y, 520 | @
The first-return map to the Poincaré set
P,=P, UP,_, equivalent to the Lorenz map, is
displayed in Fig. 1 using the coordinate z.

' C. Population of unstable periodic orbits

Let us consider a two-dimensional (2D) map with
coordinates (a,B), initial values of an orbit (agfB);
and the nth iterate («,,B,). The Euclidean distance
d,(ayBya,,B,) defines a surface S associating an alti-
tude d,, with each point (ag,B,). Starting from d, >0, a
research algorithm allows us to reach the sea floor d, =0,
therefore locating an n-period orbit. This descent
method has been successfully checked in the case of the
Hénon map by comparison against the results of Biham
and Wenzel [5]. For the Lorenz flow here studied, n-
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period orbits are located by using the 2D map generated
from the Poincaré set P,.

. The population is extracted for (R,0,b)=(28,10,%).
With the encoding partition given by letter 0 if z <z, and
letter 1 if z>z,, the population of periodic orbits is
displayed in Table I up to n =4 (n =8 periods are also
available), the coordinates (x,z) corresponding to the
rightmost periodic point in Fig. 1. Symmetric orbits go
back to their initial conditions after following the sym-
bolic sequence (WW), i.e., twice the encoding symbolic
sequence (W) for this orblt [4]. Therefore, their encoding
sequences display an odd number of 1’s.

. D. Templéte

To extract the template, we start from the two sym-
metric wing Lorenz mask [Fig. 2(a)] used by Birman and
Williams [7]. Each wing contains two bands, one labeled
0, associated with the increasing monotonic branch of the
Lorenz map and the other one, labeled 1, associated with
the decreasing branch of the Lorenz map, leading to the
four band template given in Fig. 2(b).

Following Cvitanovic and Eckard [4], such a four band
template may be reduced to a two band template corre-
sponding to an equivariant fundamental domain, i.e., a
single wing. Choosing the left wing in Fig. 2(b), we then
obtain the template in Fig. 2(c). The reinsertion of band
1 in Fig. 2(b) produced a rotation of (+) for band 1 G.e.,
a local torsion of -+ 1) in Fig. 2(c) (a positive local torsion
is associated with a clockwise rotation [2]) introduced by
the action of matrix ¥. The standard insertion conven-
tion is used [7]. The obtained template is then in agree-
ment with the Lorenz map: a band 0 (even local torsion)
is associated with the increasing (orientation preservmg)
branch of the map and a band 1 (odd local torsion) is as-
sociated -with the decreasing (orientation reversing)
branch of the map.

A template may be described by a template matrix M;;
in which M;; is the local torsion of the ith band if i =,
and the sum of the oriented crossings between the ith and
Jjth bands if i=j. We then have

0 0
My=1lo +1

&)

E. Template checking

Template checking can be carried out by considering
one pair of orbits, namely, (101,10) of the form (N;,N,).

TABLE 1. Population of periodic orbits of the Lorenz attractor R =28.

Period Number x coordinate z coordinate Sequence

1 1 14.252206 52 39.786 724 55 1
2 1 14.795 176 95 40.922 164 87 10
3 2 15.037 808 56 41.429922 32 101

15.252574 19 41.87932817 100
4 3 14.901 405 34 41.144 55428 1011
: 15.53332280 .42.467 40090 1001

15.63252179 42.675284 35 1000
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FIG. 2. Extraction of the template from the Lorenz mask:
(a) The Lorenz mask. (b) Four band template obtained by
division of each wing in two bands: one, labeled 0, associated
with the reinjection of the trajectory in the same wing, and one,
labeled 1, associated with the transition from one wing to the
other. (c) Template of the fundamental domain (one wing): the
left band 1 is reinjected in the left wing by a rotation by +r.

Following the location tree procedure described in [2],
N, and N, are constructed on the template (Fig. 3).
Then the linking number L(N,N,) is evaluated by
counting the number of signed crossings o;; using the
crossing convention given in {2], according to

L(N;,N))=1So,(p) (7)), o ®
P

in which p designates a crossing between N; and N;. We
then obtain L(101,10)=2. The physical periodic orbits
are then projected on a plane (Fig. 4) and the linking
number is again evaluated on these projections. While
doing so, it must be remembered that orbits develop on
the two-wing attractor, while, conversely, the equivari-
ance implies that one must only consider a one-wing fun-
damental domain [4]. In particular, when dealing with
asymmetric orbits, the pair of asymmetric orbits must be
projected on the plane. This is so because such orbits de-
velop on two wings and, therefore, to recover all the

(101)

_ FIG. 3. Orbit pair (101,10} constructed on the template.‘ The
linking number L(101,10) is equal to 2(+4)=2.
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" FIG. 4. The orbit pair (101,10) projected on a plane. The
linking number L (101, 10) is equal to [ 1(+8)]=2.

relevant information on one wing, the pair must be con-
sidered. As a result, the linking number then obtained
from the projection must be twice the ones obtained from
the template, as we indeed checked.

III. THREE LETTER SYMBOLIC DYNAMICS

A. First-return map and i)eriodic orbits

When R increases, the chaos becomes more developed,
i.e., a new monotonic branch appears on the first-return
map. To avoid artifact splitting of the first two branches
due to the development of the stable manifold out of the
wing plane [8], the first-return map is constructed by us-
ing the variable w=|x|+2.8z, which is formed from an
invariant variable z, the absolute value of an equivariant
variable x [9], and 2.8 is an empirical factor. The map
(Fig. 5) displays three branches labeled 0,1,2. The popu-
lation of periodic orbits (available upon request) is then
obtained. There is no sequence (000), i.e., the symbolic
dynamics is pruned.
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FIG. 5. First-return map from the Poincaré set P, to itself
(R=90): w(i-+1) versus w (i) where w (i)=|x(i)| +2.8z (). .
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then reads
0 0 0
M,=10 +1 0 )
0 0 O

FIG. 6. The Lorenz template for R =90.

B. Template and checking

Starting from the six band Lorenz mask for
(R,0,b)=(90,10,%) and processing similarly as for Fig.
2, we obtain the template in Fig. 6 in which the even local
torsion of band 2 is in agreement with the fact that
branch 2 is orientation preserving. The template matrix

As in Sec. IIE, this template has been successfully
checked by comparing linking numbers evaluated from
the template and linking numbers evaluated by using or-
bits projection for the pair (21,10).

IV. CONCLUSION

By using a topological description accounting for the
Lorenz vector field equivariance, all periodic orbits up to
a three letter symbolic dynamics may be encoded. This
requires the use of Poincaré sets generalizing Poincaré
sections for equivariant systems. Generated templates
are in agreement with the properties of first-return maps.
Proposed templates are successfully checked by invoking
the values of linking numbers.
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