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Topological characterization of the Lorenz attractor taking into account the two-order equivari-
ance of the vector field has been recently proposed by introducing a fundamental domain (typically
a wing) and one copy of it. The present paper generalizes this approach to n-order equivariant
systems. The general procedure is illustrated by taking a specific example, namely the so-called

proto-Lorenz system which is derived from the Lorenz one.

It is shown that symmetric attrac-

tors are tiled by n representations of a fundamental domain and that fundamental linking numbers
therefore have to be introduced to conveniently validate the template.

PACS number(s): 05.45.+b

I. INTRODUCTION

In the past few years several works discussed the topo-
logical description of chaotic attractors. In particular,
the idea has arisen that an attractor can be described by
the population of periodic orbits, their related symbolic
dynamics, and their linking numbers [1]. An attractor
is then characterized by a template that constitutes a
schematic view of the attractor. The case of asymmetric
systems is now well documented and many templates of
experimental attractors have been given [2-9].

Nevertheless, it could appear that an experimental sys-
tem is described by an equivariant set of ordinary differ-
entiable equations. Such an equivariant system is well
exemplified by the Lorenz system whose equivariance de-
fines an axial symmetry. In agreement with Cvitanovic
and Eckhardt [10], we have pointed out that a special
procedure is required to extract the template induced by
a symmetric attractor and we have proposed an equivari-
ant template for the common Lorenz attractor [11]. The
equivariant template relies on the fact that the Lorenz at-
tractor is tiled by a fundamental domain (roughly speak-
ing, a wing) and one copy of it. The template may be
validated by comparison between linking numbers pre-
dicted from the template and fundamental linking num-
bers that act on the fundamental domain, computed on
a plane projection [12]. If our procedure was successfully
applied to the Lorenz attractor whose equivariance is of
order 2 (the fundamental domain appears twice on the
Lorenz attractor, once for each wing), no description has
been given for systems with an higher-order equivariance.

Consequently, this paper is devoted to the topologi-
cal characterization of systems with higher-order equiv-
ariances, the procedure being illustrated by taking the
example of the proto-Lorenz system. This system is dis-
cussed by Miranda and Stone [13] who have proposed a
formula to obtain a vector field derived from the Lorenz

*Fax: (33) 35528390. Electronic address: letellie@coria.fr

1063-651X/95/52(5)/4754(8)/$06.00 52

system and for which the equivariance order can be ar-
bitrarily chosen.

The paper is organized as follows. Section II provides
a brief review concerning the general procedure of topo-
logical characterization. Section III presents the proto-
Lorenz system introduced by Miranda and Stone and its
induced template is given. Section IV deals with the
topological characterization of the nth cover of the proto-
Lorenz system whose equivariance is of order n. An ex-
plicit example with the quartic cover is discussed in Sec.
V. Section VI is a conclusion.

II. TOPOLOGICAL CHARACTERIZATION

In three-dimensional phase spaces, periodic orbits may
be viewed as knots [14] and, consequently, they are robust
with respect to smooth parameter changes and allow the
definition of topological invariants under isotopy.

The topological approach is based on the organization
of periodic orbits whose linking properties severely con-
strain the topology of the strange attractor. Also, as
recently advocated (8], [15], [16], the quantitative topo-
logical characterization of low-dimensional chaotic sets
requires the assignment of a good symbolic encoding of
trajectories. Consequently, the first step consists in defin-
ing a Poincaré section. The partition of the attractor is
then given with respect to the critical points of the first-
return map from the Poincaré section to itself. We note
that such a partition can easily be performed only in
the case of very dissipative systems. Otherwise, many
problems arise as in defining critical points for encod-
ing the symbolic dynamics. For more convenience, we
label monotonic branches of the first-return map by inte-
gers related to the local torsion (expressed in terms of )
of the corresponding stripe, and thereafter introduce a
symbolic dynamics. The population of unstable periodic
orbits is then extracted by a close return method [17] and
encoded by symbolic sequences.

In the next stage, ribbon subsets, here called stripes,
are identified in a three-dimensional (3D) representation;
i.e., the local torsion L(%,%) of each stripe is determined
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and the linking numbers L(%,j) of the ribbon graph for
the ith and jth stripes are extracted. A linking matrix
with diagonal matrix elements L(Z,7) and off-diagonal
matrix elements 2L(z,5) = 2L(j,) is proposed. The
off-diagonal elements are equal to the sum of crossings
between the ith and jth stripes of the ribbon graph with
standard insertion [18].

To check the template, we then extract the linking
number L(N;, N3) of a pair of orbits N; and N, in a plane
projection. For this process one only needs to count the
signed crossings between orbits N; and N, in a regular
plane projection of the pair (a drawing of it so that no
more than two lines cross at any point). After assigning
an orientation to the periodic orbits with respect to the
flow and defining a number €;2(p) = 1 for right-handed
(+1) and left-handed (-1) crossings p between N; and N,
[18], the linking number is given by

LN, No) = 5 Y ennlo) M
P

which is a topological invariant. Then, orbits N; and
N, are constructed on the template (the procedure is
completely reported in [14]). Finally, linking numbers are
compared: the template is validated if the linking number
obtained from the regular plane projection is equal to the
one obtained from the corresponding orbits constructed
on the template.

As the template that carries the periodic orbits is iden-
tified, the organization of the orbits is known. For a
complete discussion about equivalence between periodic
orbits embedded within a strange attractor and orbits of
the template, see [2].

III. THE PROTO-LORENZ SYSTEM

A. The vector field

In order to eliminate the symmetry properties of the
Lorenz system, Miranda and Stone [13] introduced a map
m: X — Y where Y € IR3 with coordinates (u,v, 2),
written as

u = z? — y>?
= | v=_2zy . (2)
z=2z

7 is a local diffeomorphism since its Jacobian is non-
singular at any (z,y, 2z) with (z,y) # (0,0).

The vector field C; on the orbit space Y is found to
read as follows [13]:

w=(—oc—1Nu+(c—Rv+(1—0)N +vz

v=(R-—o)u—(c+1)v+(R+0)N —uz— Nz

1
z':;u—bz

(3)
where N = +/ u? + v2.
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Miranda and Stone [13] called this system the proto-
Lorenz system on Y = IR3. The vector field C; is not
equivariant, i.e., no symmetry properties can be found
on the attractor (displayed in Fig. 1).

The vector field C; and the Lorenz one are related by
the map 7. Under this transformation, fixed points are
mapped to fixed points, periodic orbits to periodic orbits
but the symmetrical pair of fixed points of the Lorenz
system are mapped to one fixed point of the proto-Lorenz
system given by

u=20
v=2b(R—1) . (4)
z=R-1

B. The partition

In order to define the partition of the attractor, we
built a first-return map to a Poincaré section P, which is
defined as follows:

P={(u,v)€R?|z=R—-1, £>0} . (5)

The first-return map, displayed in Fig. 2, is consti-
tuted by two monotonic branches as for the Lorenz map
[19]. The first-return map allows us to encode periodic
orbits by using

0 if v<u.,
K(v):{l if v>uv.. (6)

The population of periodic orbits may be easily ob-
tained from the population of the Lorenz attractor by
applying the map 7 on the coordinates of the orbits re-
ported in [11].

C. The induced template

After many investigations, we found that the template
induced by the attractor of the proto-Lorenz system (Fig.
3) is defined by a linking matrix written as

Mif:(ﬁfl)' (™)

%0 0200 400 600 800

v

FIG. 1. The proto-Lorenz system at (R, o,b) = (28,10,8/3).
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10065300 500 700 900
v

n

FIG. 2. First-return map to the Poincaré section built with
the v coordinate.

We have validated this template by counting linking
numbers from plane projections of pairs of orbits and
checking that they are equal to the ones predicted by the
template. For instance, from the plane projection of the
couple (101,10) (Fig. 4), we found L(101,10) = Z(+4) =
+2, which is equal to the one predicted by the template.

In a previous paper [11], we have showed that the
Lorenz system is characterized by such a template (for
R = 28). Consequently, the topology is invariant under
the action of the map =.

IV. THE Nth COVERS Cy OF THE
PROTO-LORENZ SYSTEM

We are now interested in possessing a system whose
attractor presents an n order of symmetry. Therefore,
the vector field must be equivariant under a -, matrix
such as 4> = I. A procedure to obtain such a system is
given by Miranda and Stone [13]. Vector fields C, will
present an equivariance defined by a +, matrix, which is
written as

cosf, —sinf, 0
sinf, cosf, 0
0 0 1

, (8)

Tn =

where 0, = £2 (the sign of the rotation is irrelevant).
This v, matrix defines a rotation of #,, with respect to

Stripe 1

Il Stripe 0

FIG. 3. Template of the proto-Lorenz system.
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FIG. 4. Plane projection of the
L(101,10) = 1 (+4) = +2.

couple

(101,10):

the z axis.

They call these vector fields covers of the proto-Lorenz
system C;. Due to the relation between the Lorenz and
the proto-Lorenz systems, the double cover C; of the
proto-Lorenz system identifies with the Lorenz system.
The structure of the covers is conveniently understood
by viewing the subspace (u,v) of IR? as the space @ of
complex numbers w = u + tv.

A. First-return map

Let C, be a vector field that presents n+ 1 fixed points
that are the origin Fy (0,0,0) and n fixed points F} re-
lated by the following recurrence relation:

Fijp1 =7 F; . (9)

This relation is valid for any system whose n-order
equivariance defines a rotation by :1:27"'.

In order to define the partition, we introduce a
Poincaré set P constituted by n Poincaré sections P;
given by

Pj={(wn,z)erR|0=0F—(j—1)?£-, é<0} ,
(10)

where Op is the argument of the complex number defin-
ing the fixed point Fj, which is chosen among the n
fixed points Fj for its computational advantages. A first-
return map is thereafter built by using the invariant vari-
able p, which is the modulus of w,. The population of
periodic orbits may then be encoded following the parti-
tion given by the first-return map.

B. Population of periodic orbits

In an n-order equivariant system, as the fundamental
domain appears n times in the state space, all symbolic
sequences of periodic orbits are described n times within
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the complete attractor in a way that depends on the sym-
metry properties of the orbits.

These symmetry properties of orbits may be directly
known from the symbolic sequences. Let us assume that
the considered n-equivariant vector field generates an
attractor whose first-return map presents ! monotonic
branches labeled on the set ¥ = {0,1,...,I — 1} of sym-
bols. Each orbit of period p is encoded by a symbolic se-
quence (W) on X. Depending on the topological proper-
ties associated with each branch of the first-return map, a
code may correspond to a transition between two succes-
sive representations of the fundamental domain, or not.
In the case of the nth cover of the proto-Lorenz system,
the symbol 0 is associated with the absence of transition
while code 1 is associated with the existence of a transi-
tion from a copy of the fundamental domain to the next
one under the action of +,.

Transition from one copy to another is the relevant fea-
ture to determine if an orbit is symmetric or not. Conse-
quently, let us introduce a transition operator that maps
a code K; (the symbol associated with the jth intersec-
tion between the trajectory and the Poincaré set) per-
taining to ¥ to a transition number T (K;) as follows:

1 if K; is associated with a transition from
a copy of the fundamental domain to the
next one generated by the action of ~v,.

0 otherwise .

T(K;) =

(11)

We define the transition number 7w of a period-p orbit
encoded by the symbolic sequence (W) as the sum of the
p transition numbers 7 (K;) associated with the p codes
K;, which constitute the symbolic sequence (W). From
this transition number 7w, we can distinguish different
kinds of periodic orbits as follows.

Depending on the transition number Ty, an orbit must
describe its symbolic sequence m times before returning
to its initial conditions where m is the smallest integer
such as:

mod (mTw,n) =0, (12)

where mod (mT7Tw,n) is the rest of the integer division
of mTw by n. For instance, in the C3 cover (n = 3), the
orbits encoded by (1) and (1011) have a transition num-
ber 7(1) and 7(1011) equal to 1 and 3, respectively. The
orbits, displayed in Fig. 5, are found to return to their
initial conditions after describing their symbolic sequence
three and one times, respectively. This is easily checked
from the relation (12) since the smallest integer m (# 0)
such as mod(m7(;),3) = 0 are m = 3 and m = 1 for
orbits (1) and (1011), respectively. In a similar way, in
the C4 cover, orbits encoded by (10), (101), and (10111)
(displayed in Figs. 6, 7, and 8), describe their symbolic
sequence four times, twice, and once before returning to
their initial conditions, respectively.

Let us consider an asymmetric orbit £ of period p whose
transition number 7w is equal to n (m = 1). For in-
stance, such an orbit may be viewed as the orbit (1011)
of the C3 cover or the orbit (10111) of the C4 cover. Orbit
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¢ describes its symbolic sequence once before returning
to its initial conditions; i.e., it is degenerated n times.
In particular, each one of the p periodic points is vis-
ited once in the Poincaré set. These p periodic points,
which are actually dispatched on Poincaré sections (we
recall that the Poincaré set is constituted by n Poincaré
sections), may then be divided in n subsets, each subset

6 ' PRy
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- \
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20 3 0 5 10
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FIG. 5. Examples of a symmetric orbit and of a triplet of
asymmetric orbits extracted from the triple cover C3 of the
proto-Lorenz system. (a) Symmetric orbit encoded (1), (b)
asymmetric orbit encoded (1011), and its symmetric configu-
rations, (c) and (d).



4758 C. LETELLIER AND G. GOUESBET 52

-3+ -

_5 I . S .
-5 -3 -1 7 3 5

N

FIG. 6. Symmetric orbit encoded by (10) extracted from
the quartic cover Cs.

corresponding to the periodic points visited in the jth
Poincaré section. Periodic points that are not visited in
a Poincaré section P; are visited in different symmetric
configurations 47¢ of the orbit £. Also, each symmetric
configuration of orbit £ visits a different subset of peri-
odic points in the Poincaré sections; i.e., each copy of £
may be associated one-to-one with each subset. Such an
orbit £ of time period T¢ satisfies

(Y e ()} N {13 Y ne(t)} 0, = 0

where Y ,¢(t) are the coordinate vectors at time ¢ of the
periodic orbit £ in the state space.

Let us now consider an orbit ¢ of period p with a tran-
sition number 7y such as there exists an integer m # 1,
which is a divisor of n less than n. The orbit describes
therefore m times its symbolic sequence before returning
to its initial conditions. Such an orbit is asymmetric since
it visits the fundamental domain and its copies in a differ-
ent way. Following the same arguments as in the previous

Vie[l,n-1],

5 — T T ~
3+ 4
-
1 r |
)
A )
s
3+ i
-5 1 | L |
-5 -3 -1 1 3 5

FIG. 7. Asymmetric orbit encoded by (101) whose degen-
eracy is equal to 2 (from C4).

3} 4

_s | : ) .
-5 -3 -1 1 3 5

FIG. 8. Asymmetric orbit encoded by (10111) whose de-
generacy is equal to 4 (from Cy).

case, ;- subsets of periodic points may be distinguished

in the Poincaré set. The orbit ¢ is then degenerated
times. For instance, the orbit (101) of the quartic cover
(n = 4) has a transition number 7(30;) Which is equal to
2. m is therefore equal to 2 and the orbit is degenerated
twice; i.e., two symmetric configurations appear in the
state space. Such an orbit satisfies

(Ve Y N { VY nc(®)} %, = 0

and

Vjel,m—1]

(Ve = (VY nc(t)}75, -

Consequently, there exists one kind of asymmetric or-
bit with its specific degeneracy for each divisor of n.

Lastly, let us consider an orbit n of period p whose
transition number Tw satisfies mod(m7Tw,n) = 0 with
m = n. mod(Tw,n) is therefore not a divisor of n. The
orbit 7 describes n times its symbolic sequence before
returning to its initial conditions. Each periodic point
is therefore visited by the orbit 7 within each Poincaré

section before returning to its initial conditions. The
orbit 7 satisfies
(Y ()} = {¥ Y n ()} Vj € [1,n— 1]
nn t=0 = \Tn¥ ng t=0 J ’

and is consequently a symmetric one.

In summary, there exists one kind of periodic orbit as-
sociated with each divisor of n. The product m x k where
k is the degeneracy is always equal to n. Consequently,
the symmetry properties of an orbit may be easily found
from its symbolic sequence.

C. Fundamental linking numbers

For any system whose equivariance defines a rotation
around an axis by %, the precise definition of the fun-
damental domain and of its copies is not required to eval-
uate fundamental linking numbers. Indeed, fundamental

linking numbers £, (N;, N;) between orbits NV; and N;
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are simply defined as follows:

La(Niy V) = SL(NuNy) = o= S eslp)  (1#9)

(13)

where €;;(p) are the numbers associated with oriented
crossings between IV; and N; on a regular plane projec-
tion. In this projection, symbolic sequences of orbit must
appear n times; i.e., complete symmetric orbits or the k
configurations of asymmetric orbits degenerated k times
must be projected.

Such fundamental linking numbers are then equal to
the linking numbers predicted by the template induced
by the fundamental domain.

D. Template

The symmetry induces specific considerations such as
defining a fundamental domain D, which tasselates the
complete state space [10]. Indeed, when a dynamical
system is invariant under the action of +,,, the state space
can be tiled by a fundamental domain D and its copy
i D (note that y»D = D). For instance, in the Lorenz
J
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attractor, the fundamental domain may be viewed as a
wing [11]. It has been shown that the dynamical analysis
of such a system must be achieved by working in the
fundamental domain in which the trajectory is projected
(10,11].

Then, let us recommend building a mask of the at-
tractor projected in the plane perpendicular to the rota-
tion axis. In this plane, copies of the fundamental do-
main can be easily defined by identifying the angle 27”
of the rotation induced by <,. The proposed template
must be checked by comparison between linking numbers
predicted by the template induced by the fundamental
domain and the fundamental linking numbers computed
from projection of orbit pairs in the plane perpendicular
to the rotation axis.

V. THE QUARTIC COVER C, OF THE
PROTO-LORENZ SYSTEM

We now exemplify the application of the general proce-
dure by characterizing a 4-order equivariant system, i.e.,
on the quartic cover C4 of the proto-Lorenz system.

The vector field of the quartic cover C4 of the proto-
Lorenz system is written as

{—ara +(20+ R —2)r’s+ (0 — 2)rs®* — (R — z)sal

7":

2(1‘2 + 32)
i [R—2)r® + (0 —2)r’s + (=20 — R+ 2)rs® — 0s°] (14)
2(7‘2 + 52)
2 =2r3s—2rs® — bz
[
This vector field presents five fixed points that are the ~ where p = /7% + 5% and 8p = tan"!(2£). Conse-

origin Fy(0,0,0) and four fixed points F}; defined as

TF TF
Fr=\|sp |, Fo=| —sr |,
ZF ZF
—TF —TF
F3 = —SF Fy = SF )
ZF ZF

where

rr = 3.200412 582,
sp = 1.325 64297,
R = 27.0

for (R,0,b) = (28,10,8/3). One may remark that these
four fixed points F; have a z coordinate equal to the z
coordinate of the fixed points Fy of the Lorenz attrac-
tor, i.e.,, zrp = R — 1. Moreover, if we use the complex

coordinate wy = 7 + is, we obtain that fixed points Fj
are defined by

pei[ap—(j—ng]
F; = ) (15)
ZF

quently, we may easily check that fixed pgints F; are
connected by the recurrence rule (9) for n = 4 where

cosfy —sinfy O 0 410

4= | siny cosy 0| =] -1 0 0| , (16)
0 0 1 0 0 1

with 64 = —Z. One may also check that v = I. The
6 R

FIG. 9. The quartic cover C4 of the proto-Lorenz system.
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FIG. 10. Mask of the quartic cover C4 of the proto-Lorenz
system.

vector field C4 is therefore equivariant under the action
of the v4 matrix and the equivariance order is 4.

By integrating numerically the vector field C4, we ob-
tain the attractor displayed in Fig. 9. As this attractor
is globally invariant under the action of the v, matrix, it
may be tasselated by a fundamental domain D and three
of its copies. A mask is then built with a schematic view
of the fundamental domain and of its copies (Fig. 10).

We use the Poincaré set P constituted by four Poincaré
sections P; defined as

P,-:{(w4,z)€¢XR|0=9F—(j—1)72—r,9<0} ,
(17)

where wy = r + i¢s is a complex number whose @ is the
argument. A first-return map to this Poincaré set is built
with the invariant variable p. This map is similar to
the map of the proto-Lorenz system displayed in Fig. 2.
Two monotonic branches are exhibited and are associated
with the two stripes of the mask displayed in Fig. 10.

The periodic orbits are then extracted and encoded by
the symbolic dynamics defined as

_Jo0 if p<op,
K ={] i 050 (18)

where p. = 4.22. The population of periodic orbits is
found to be the same as on the proto-Lorenz system or
as on the Lorenz system [11].

As an example, we check the proposed template with
the pair of orbits encoded as (1,10). Eight positive cross-
ings are counted on the plane projection of the couple
(1,10) in Fig. 11. The fundamental linking number
L£4(1,10) is therefore equal to 3(+8) = +1, which is in-

C. LETELLIER AND G. GOUESBET

52
5 T
3+ 4
I -
-
s _
3t .
_5 ! , \ \
-5 -3 -1 1 3 5
)
FIG. 11. Plane projection of the couple (1,10):

L4 = L(+8) = +1.

deed equal to the linking number L(1,10) predicted by
the template induced by the proto-Lorenz system.

VI. CONCLUSION

Topological characterization of n-equivariant vector
fields is solved in the case where the equivariance de-
fines an invariance under a rotation by 23, in modulus.
It is shown that a fundamental domain is conveniently
defined. The fundamental domain and its (n — 1) copies
completely tasselate the attractor. In order to determine
the partition of the attractor, we showed that a Poincaré
set constituted by n Poincaré sections (one per copy of
the fundamental domain) is required. The first-return
map to this Poincaré set is thereafter built with an in-
variant variable (given by the modulus of the complex
coordinate defined on the plane perpendicular to the ro-
tation axis). A fundamental linking number is also in-
troduced to check the linking numbers predicted by the
template induced by the fundamental domain.

ACKNOWLEDGEMENT

We wish to thank H. Labro for his research of the fixed
points of the different vector fields of the covers of the
proto-Lorenz system.

[1] G. B. Mindlin, X. J. Hou, H. G. Solari, R. Gilmore, and
N. B. Tufillaro, Phys. Rev. Lett. 64, 230 (1990).

[2] G. B. Mindlin, H. G. Solari, M. A. Natiello, R. Gilmore,
and X. J. Hou, Nonlin. Sci. 1, 147 (1991).

(3] L. Flepp, R. Holzner, E. Brun, M. Finardi, and R. Badii,
Phys. Rev. Lett. 67, 2244 (1991).

[4] N. B. Tufillaro, R. Holzner, L. Flepp, E. Brun, M. Fi-
nardi, and R. Badii, Phys. Rev. A 44, 4786 (1991).

[5] F. Pappoff, A. Fioretti, E. Arimondo, G. B. Mindlin, H.

G. Solari, and R. Gilmore, Phys. Rev. Lett. 68, 1128
(1992).

[6] M. Lefranc and P. Glorieux, Int. J. Bif. Chaos 3, 643
(1993).

[7] N. B. Tufillaro, P. Wyckoff, R. Brown, T. Schreiber, and
T. Molteno, Phys. Rev. E 51, 164 (1995).

(8] N. B. Tufillaro, Phys. Rev. E 50, 4509 (1994).

[9] C. Letellier, L. Le Sceller, E. Maréchal, P. Dutertre, B.
Maheu, G. Gouesbet, Z. Fei, and J. L. Hudson, Phys.



52 TOPOLOGICAL CHARACTERIZATION OF A SYSTEM WITH . ..

Rev. E 51, 4262 (1995).

[10] P. Cvitanovi¢ and B. Eckhardt, Nonlinearity 6, 277
(1993).

[11] C. Letellier, P. Dutertre, and G. Gouesbet, Phys. Rev. E
49, 3492 (1994).

[12] C. Letellier and G. Gouesbet (unpublished).

[13] R. Miranda and E. Stone, Phys. Lett. A 178, 10 (1993).

[14] N. B. Tufillaro, T. Abbott, and J. Reilly, An Ezper-
imental Approach to Nonlinear Dynamics and Chaos
(Addison-Wesley, New York, 1992).

4761

[15] A. Politi, in From Statistical Physics to Statistical Infer-
ence and Back, edited by P. Grassberger and J. P. Nadal
(Kluwer Academic, Boston, 1994).

[16] N. B. Tufillaro, in From Statistical Physics to Statistical
Inference and Back (Ref. [15]).

[17] C. Letellier, P. Dutertre, and B. Maheu, Chaos 5, 271
(1995).

(18] P. Melvin and N. B. Tufillaro, Phys. Rev. A 44, 3419
(1991).

[19] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).



FIG. 10. Mask of the quartic cover C4 of the proto-Lorenz
system.



\:I Stripe |

\ /‘ . Stripe 0

FIG. 3. Template of the proto-Lorenz system.
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