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ABSTRACT

This supplementary materials provides a detailed comparison between the symbolic approach we developed and the procedure
based on inference graphs as introduced by Liu and coworkers’. The number of possible combinations are details and all
combinations providing a full observability were checked by an analytical computation of the determinant of the corresponding
observability matrix.

1 Comparison with the approach using inference diagram

In Liu and coworkers’ approach,1 the first step is to consider the so-called inference diagram by drawing an oriented link xi→ x j
when x j occurs in the ith governing equation (ẋi) of the system. Links (auto-loops) xi→ xi are discarded since they do not
contribute to the connectivity of the network. Then the inference diagram is decomposed into strongly connected components
(SCC) in such a way that any pair of nodes belonging to a given SCC are connected via an oriented path. When there is no
incoming links from a node outside of a given SCC, such SCC is a root SCC, as the ones encircled by dashed lines in Figs. 1-4.
It is then assumed that it is sufficient to measure one variable in each root SCC for estimating the states of the network.

For instance, the Rössler system2


ẋ =−y− z
ẏ = x+ay
ż = b+ z(x− c)

(1)

is characterized by the inference diagram shown in Fig. 1. There is a single root SCC. It should be therefore sufficient to measure
one of the three variables to estimate the states of the system. However, this is not correct since the symbolic observability
coefficients are equal to ηx3 = 0.88, ηy3 = 1, and ηz3 = 0.44, respectively.3 Rigorously speaking only variable y provides a full
observability. When variable x or z is measured, there is always a domain of the original state space which is not observable,4

meaning that, the states of that domain cannot be estimated. Consequently, the observability of the original dynamics strongly
depends on the variable measured.3 The inference diagram does not allow to discriminate the observability of the original state
space provided by these different variables.
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Figure 1. Inference diagram of the Rössler system (1).
Root SCCs are encircled with dashed lines and labeled with
R.
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Figure 2. Inference diagram of the 5D rational model (2).
Root SCCs are encircled with dashed lines and labeled with
R.

The inference diagram of the 5D rational model5



ẋ1 =
vsK4

I

K4
I + x4

5
− vmx1

Km + x1

ẋ2 = ksx1−
V1x2

K1 + x2
+

V2x3

K2 + x3

ẋ3 =
V1x2

K1 + x2
+

V4x4

K4 + x4
− x3

(
V2

K2 + x3
+

V3

K3 + x3

)
ẋ4 =

V3x3

K3 + x3
− x4

(
V4

K4 + x4
+ k1 +

vd

Kd + x4

)
+ k2x5

ẋ5 = k1x4− k2x5

(2)

is shown in Fig. 2. There is a single root SCC. Thus, according to this approach, measuring one of the variables of the system
should be sufficient to estimate the states of the system. This is in strong contradiction with our results since, for instance
when variable x3 is measured, the symbolic observability coefficient is ηx5

3
= 0.02, thus corresponding to an extremely poor

observability. The situation when variables x2 or x4 are measured is only slightly better since ηx5
2
= 0.08, and ηx5

4
= 0.09,

respectively (note that here observability is considered good8 when η > 0.75). Our procedure shows instead that at least three
variabels must be measured for having a full observability of the original state space.

The inference diagram of the 9D Rayleigh-Bénard model6



ẋ1 = −σb1x1− x2x4 +b4x2
4 +b3x3x5−σb2x7

ẋ2 = −σx2 + x1x4− x2x5 + x4x5−σx9/2
ẋ3 = −σb1x3 + x2x4−b4x2

2−b3x1x5 +σb2x8
ẋ4 = −σx4− x2x3− x2x5 + x4x5 +σx9/2
ẋ5 = −σb5x5 + x2

2/2− x2
4/2

ẋ6 = −b6x6 + x2x9− x4x9
ẋ7 = −b1x7−Rx1 +2x5x8− x4x9
ẋ8 = −b1x8 +Rx3−2x5x7 + x2x9
ẋ9 = −x9−Rx2 +Rx4−2x2x6 +2x4x6 + x4x7− x2x8

(3)

is shown in Fig. 3. The high connectivity of this reaction network is such that there is again a single root SCC. Consequently,
according to the inference diagram, any variable of the system should provide a correct estimation of the system states.
Nevertheless, the observability matrix is rank deficient when variables x5, x6, or x7 are measured and the observability is
extremely poor when only of the other variables are measured (ηx9

2
= ηx9

4
= 0.03 and ηx9

1
= ηx9

3
= ηx9

7
= ηx9

8
= 0.04). Again,

the inference diagram does not provide a reliable information. We showed that at least six variables must be measured for
having full observability of this 9D model.
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Figure 3. Inference diagram of the 9D Rayleigh-Bénard
model (3). Root SCCs are encircled with dashed lines and
labeled with R.

2

3

8 7

6

5

9

10

11 4

12

1

m

R

R

R

R

Figure 4. Inference diagram of the 13D DNA model (4).
Root SCCs are encircled with dashed lines and labeled with
R.

The inference diagram of the 13D DNA model7

ẋ1 = k1− (k2 + kwee + k7x2)x1 + k25x8 +(k7r + k4)x4

ẋ2 = k3− k4x2−
kpx2(x1 +βx8 +αx3)m

Kmp + x2
− k7x2(x1 + x8)− k8x2x3 +(k8r + k6′)x9

+(k7r + k2 + k2′)(x4 + x10)

ẋ3 = k5− (k6 + k8x2)x3 +(k8r + k4)x9

ẋ4 = k7x2x1− (k7r + k4 + k2 + k2′)x4

ẋ5 =
ki(x1 +βx8)(1− x5)

Kmi +1− x5
− kirx5

Kmir + x5

ẋ6 =
ku2(x1 +βx8)(1− x6)

Kmu2 +1− x6
− kur2x6

Kmur2 + x6

ẋ7 =
kwr(1− x7)

Kmwr +1− x7
− kw(x1 +βx8)x7

Kmw + x7

ẋ8 = kweex1− (k25 + k2 + k7x2)x8 +(k7r + k4)x10

ẋ9 = k8x2x3− (k8r + k4 + k6′)x9

ẋ10 = k7x2x8− (k7r + k4 + k2 + k2′)x10

ẋ11 =
kux5(1− x11)

Kmu +1− x11
− kurx11

Kmur + x11

ẋ12 =
kc(x1 +βx8)(1− x12)

Kmc +1− x12
− kcrx12

Kmcr + x12

ṁ = µm

(4)

is shown in Fig. 4. There are seven SCC, among which four are root SCCs. According to the inference diagram, measuring
simultaneously variables x6, x7, x11 and x12 should be sufficient to estimate the states of the 13D DNA model. This is not
confirmed by our results since the observability matrix obtained with four measured variables is always rank deficient. The
inference diagram does not accurately assess the observability of this reaction network.

2 Number of combinations
For a d-dimensional system for which m variables are measured, the number of different vectors which can span the reconstructed
space Rd is given by

Nc =
d−1

∑
m=1

(
d
m

)
·
((

d−m
m

))
where

(
n
k

)
=

n!
k!(n− k)!

(5)
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is the binomial coefficient providing the number of ways to choose a subset from a set of elements, and
((

n
k

))
=(

n+ k−1
k

)
provides the number of ways to choose a subset of k elements from a set of n elements which can be re-

peatedly selected.
For a d-dimensional system for which m variables are measured and mp ≤ m of them are preselected, and for which there

are δ pairs of exclusive variables (at least one of each pair must be measured), the number of possible combinations is

N′c =
δ

∑
k=0

2δ−k
(

δ

k

)
·
((

mp + k
d− (mp + k)

))
+

d−1

∑
k=δ+1

(
md

k−δ

)
·
((

mp + k
md

))
(6)

where md = d−m−2δ + k−1.

3 Success rate
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Table 1. Symbolic observability coefficients η and the corresponding analytical determinant of the observability matrix Det O
for the 3D Rössler system, the 5D Drosophila model, the 9D Rayleigh-Bénard model and, the 13 DNA model. The success rate
for these systems is 100%. The number m of measured variables is also reported.

m Observability coeff. Det O m Observability coeff. Det O

3D Rössler system 5D Drosophila model

1 ηy3 = 1 1 3 ηx2
2x3x2

4
= 1 −ksk2

2 ηx2y = 1 1 3 ηx2
2x3x2

5
= 1 k1ks

2 ηx2z = 1 −1 4 ηx1x2x3x2
4
= 1 k2

2 ηy2z = 1 −1 4 ηx1x2x3x2
5
= 1 −k1

9D Rayleigh-Bénard model 4 ηx2
2x3x4x5

= 1 −ks

6 ηx2
1x2

2x2
3x4x5x6

= 1 − b2
2σ3

2 4 ηx2
2x3x4x5

= 1 −ks

6 ηx2
1x2x2

3x2
4x5x6

= 1 − b2
2σ3

2 2 ηx2
2x3

5
= 0.70 k2

1ks

[
V3

K3+x3
− V3x3

(K3+x3)2

]
7 ηx2x4x5x6x2

7x2
8x9

= 1 −R2 13D DNA model

7 ηx2x3x2
4x5x6x2

7x8
= 1 Rσ

2 10 ηx2
1x2

2x2
3x4x5x6x7x11x12x13

= 1 (k7r + k2 + k2′)(k8r + k4)k25

7 ηx1x2x2
3x2

4x5x6x7
= 1 − b2σ2

2 10 ηx1x2
2x2

3x5x6x7x2
8x11x12x13

= 1 −(k7r + k2 + k2′)(k8r + k4)(k7r + k4)

7 ηx1x2
2x4x5x6x7x2

8
= 1 Rσ

2 10 ηx2
1x2x2

3x5x6x7x2
8x11x12x13

= 1 (k7r + k4)
2(k8r + k4)

7 ηx1x2
2x2

3x4x5x6x7
= 1 − b2σ2

2 10 ηx2
1x2

2x3x5x6x7x2
8x11x12x13

= 1 −(k7r + k4)
2(k8r + k6′)

7 ηx2
1x2x3x2

4x5x6x8
= 1 − b2σ2

2 10 ηx2
2x2

3x5x6x7x2
8x10x11x12x13

= 1 −kwee(k7r + k2 + k2′)(k8r + k4)

7 ηx2
1x2x2

3x4x5x6x9
= 1 − b2σ2

2 10 ηx2
1x2

2x2
3x5x6x7x8x11x12x13

= 1 (k7r + k2 + k2′)(k8r + k4)(k7r + k4)

7 ηx2
1x2

2x3x4x5x6x8
= 1 b2σ2

2 11 ηx2
1x2x2

3x4x5x6x7x10x11x12x13
= 1 (k8r + k4)k25

8 ηx1x2x4x5x6x7x2
8x9

= 1 −R 11 ηx2
1x2

2x3x4x5x6x7x10x11x12x13
= 1 −(k8r + k6′)k25

8 ηx2x3x4x5x6x2
7x8x9

= 1 −R 11 ηx1x2
2x2

3x5x6x7x8x10x11x12x13
= 1 −(k7r + k2 + k2′)(k8r + k4)

8 ηx1x2x3x2
4x5x6x7x8

= 1 σ

2 11 ηx2
1x2x2

3x5x6x7x8x10x11x12x13
= 1 (k7r + k4)(k8r + k4)

8 ηx1x2x2
3x4x5x6x7x9

= 1 b2σ 11 ηx2
1x2

2x3x5x6x7x8x10x11x12x13
= 1 −(k7r + k4)(k8r + k6′)

8 ηx2
1x2x3x4x5x6x8x9

= 1 b2σ 11 ηx2x2
3x4x5x6x7x2

8x10x11x12x13
= 1 kwee(k8r− k4)

8 ηx1x2
2x3x4x5x6x7x8

= 1 −σ

2 11 ηx2
2x3x4x5x6x7x2

8x10x11x12x13
= 1 kwee(k8r + k6′)

5 ηx2
1x2x2

3x3
4x5

= 0.90 − b2
2σ4

2 (x2− x4) 11 ηx2
2x3x5x6x7x2

8x9x10x11x12x13
= 1 kwee(k7r + k2 + k2′)

9 ηx2
1x2

2x2
3x5x6x7x11x2

12x13
= 0.93 (k7r+k2+k2′ )(k8r+k4)(x12−1)(k7r+k4)

Kmc+1−x12
kcβ
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