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When a dynamical system is investigated from a time series, one of the most challenging problems
is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to
this problem but very few have considered the influence of symmetries in the original system and
the choice of the observable. Indeed, it is well known that there are usually some variables that
provide a better representation of the underlying dynamics and, consequently, a global model can be
obtained with less difficulties starting from such variables. This is connected to the problem of
observing the dynamical system from a single time series. The roots of the nonequivalence between
the dynamical variables will be investigated in a more systematic way using previously defined
observability indices. It turns out that there are two important ingredients which are the complexity
of the coupling between the dynamical variables and the symmetry properties of the original system.
As will be mentioned, symmetries and the choice of observables also has important consequences
in other problems such as synchronization of nonlinear oscillators. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1487570#

A great number of techniques developed for studying
nonlinear dynamical systems start with the embedding of
a scalar time series, lying on anm-dimensional object, in
an embedding space of dimensiond. Several works have
analyzed how larged should be in relation to m to ensure
a theoretical equivalence between the embedded dynam-
ics and that of the original system. The main results
reached are valid, in general, regardless of the observable
chosen. In a number of practical situations, however, as
may be expected, the choice of the observable does matter
for our ability to extract dynamical information from the
embedded attractor. This paper is devoted to analyzing
such a problem using benchmark models. It turns out
that there are two important ingredients: the complexity
of the coupling between the dynamical variables, and the
symmetry properties of the original system. To quantify
the coupling complexity, we estimate observability indices
for our examples. The ideas discussed in the paper have
direct bearing on standard problems in nonlinear dynam-
ics such as model building and synchronization.

I. INTRODUCTION

One way of investigating nonlinear behavior is by em-
bedding a time series~as a result of the observation of the
time evolution of the system! in phase space. A point in such
a space is then associated with a single state of the system
which is fully defined by a set ofm dynamical variables.
When an experimental dynamical system is investigated,
thesem physical quantities should be all measured, at least in

principle, to have a complete description of the state of the
system under study. Unfortunately, in most experimental
situations, only a single physical quantity is measured.
Hence, the time evolution of the system is known through a
scalar time series. The next step is therefore to reconstruct a
phase space from this scalar time series. The trajectory re-
constructed is thus expected to have the same properties than
the trajectory embedded in the original phase space.

A pioneering paper by Packardet al.1 points out two
ways of reconstructing a phase space, namely, by using time
delay or time derivative coordinates. Another kind of coor-
dinates, namely principal components,2 may also be used.
Gibson et al.3 demonstrated that the relationships between
delays, derivatives and principal components consist of rota-
tion and rescaling. Consequently, from Gibson’s point of
view, statements about the nature of the equivalence between
the original and the reconstructed phase portraits would not
depend on the coordinate system.

Once a phase portrait is reconstructed, it is sometimes
desirable to obtain a model able to reproduce the trajectory
in the reconstructed phase space~see, for instance, Refs. 4 or
5, and references therein!. It may be also attempted to control
the dynamical behavior using a feedback term6,7 or to syn-
chronize two systems.8 In all these cases, ease of success
clearly depends on the choice of observable, but this has
rarely been related to the observability of the dynamics. Here
we examine two aspects of this relevance for the choice of
the observable:~i! the complexity of the couplings between
the dynamical variables and~ii ! symmetry properties. These
two points of view are investigated with the aid of observ-
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ability indices introduced in Refs. 9 and 10. In this paper we
refine the original definition of such indices, explore aspects
relating to time averaging and ergodicity.11

The paper is organized as follows: In Sec. II, we first
present a detailed case of how the choice of observable can
affect the ability to reconstruct dynamics from scalar time
series. In the second part of Sec. II, the definition of an
observability index is reviewed. In Sec. III, using several
bench models and the observability indices we show that the
nonequivalence between observables has two basically dif-
ferent sources, namely,~i! the couplings between the differ-
ent dynamical variables, this information is quantified by the
observability indices, and~ii ! the presence of symmetries to
which the observability indices are basically insensitive. The
main conclusions of the paper are summarized in Sec. IV.

II. NONEQUIVALENCE OF THE DYNAMICAL
VARIABLES: A FIRST EXAMPLE

Assume that the dynamical system under study isẋ(t)
5f(x(t)), wheret is the time,xPRm is the state vector, and
f is the nonlinear vector field. As often happens in experi-
mental settings, a single physical quantity is expected to be
measured. Hence, the recorded variable~also called the ob-
servable! is obtained using a measurement functionh:Rm

→R such that the recorded scalar time series$s(t)% t50
t is

given by s(t)5h(x(t)). This measurement function acts
therefore as a projection of anm-dimensional object onto a
one-dimensional space. An equivalent phase portrait is thus
reconstructed using the derivative coordinates as suggested
by Packardet al.1 In this paper, most of examples will con-
cern three-dimensional systems (m53) which will be recon-
structed in a three-dimensional space. Consequently, the re-
constructed portrait is spanned by the derivative coordinates
acoording to

w5H X5s,
Y5 ṡ,
Z5 s̈.

~1!

A coordinate transformationF between the original dynami-
cal variables (x,y,z) and the derivative coordinates (X,Y,Z)
can therefore be defined. In the case wheres5x, the trans-
formationF reads

X5s, Y5 f s , Z5
] f s

]x
f x1

] f s

]y
f y1

] f s

]z
f z , ~2!

where f x , f y , and f z are the components off. When the
derivative coordinates are used, a differential model may be
written under the form,

Ẋ5Y, Ẏ5Z, Ż5Fs~X,Y,Z!, ~3!

whereFs(X,Y,Z) is the model function.12 Here is the great
advantage of the continuous model built on the derivative
coordinates because, when the original system is known, the
model functionFs may be analytically derived using the co-
ordinate transformationF.10 The functionFs contains infor-
mation on the nature of the coupling between dynamical
variables ‘‘seen from one observable point of view.’’ Our
main objective is thus to investigate how the nature of the

couplings may effect the observability of a system when the
analysis is carried out from a single variable.

Let us start with a simple example. We assume that the
original system is the Ro¨ssler system,13

ẋ52y2z, ẏ5x1ay, ż5b1z~x2c!, ~4!

where (a,b,c) are the bifurcation parameters. The cases
where each dynamical variable is successively the observ-
able are now investigated.

Let us start with the measurement function such thats
5h(x,y,z)5y. The coordinate transformationFy reads then
as

Fy5H X5y,
Y5x1ay,
Z52y2z1ax1a2y,

~5!

and the corresponding model functionFy is

Fy52b2cX1~ac21!Y1~a2c!Z2aX2

1~a211!XY2aXZ2aY21YZ. ~6!

This is a very favorable case because the determinant of
the Jacobian matrixJ(Fy) never vanishes and it may be
easily shown thatFy is injective. The coordinate transforma-
tion Fy therefore defines a diffeomorphism from the original
phase space to the reconstructed one. Consequently, the
Rössler system is most observable from they-observable,
i.e., the y-variable is the best observable for investigating
this system from a scalar time series.

When the observable is thex variable of the Ro¨ssler
system, i.e.,s5h(x,y,z)5x, the coordinate transformation
Fx reads as

Fx5H X5x,
Y52y2z,
Z52x2ay2b2z~x2c!,

~7!

and the corresponding model functionFx is

Fx5ab2cX1X22aXY1XZ1acY1~a2c!Z

2
~a1c1Z2aY1b!Y

a1c2X
. ~8!

This functionFx is rational, i.e.; it presents a singularity
at X5a1c which is induced by the inverse functionFx

21 .
In fact, Fx is injective but the determinant of its Jacobian
matrix J(Fx) vanishes forx5a1c. A singularity is there-
fore involved in this coordinate transformation. The set of
points associated with the planex5a1c cannot be observed
from the (X,Y,Z)-space through thex variable. Although
this set is of Lebesgue measure zero, it effects the observ-
ability of the system but not too much because the singular
plane is located near the outer boundary of the attractor.

The last case is to consider thez variable of the Ro¨ssler
system as the observable, i.e.,s5h(x,y,z)5z. The coordi-
nate transformationFz reads as

Fz5H X5z,
Y5b1z~x2c!,
Z5@b1z~x2c!#~x2c!1z~2y2z!,

~9!
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and the associated model function is

Fz5b2cX2Y1aZ1aX22XY

1
~ab13Z!Y2aY22bZ

X
1

2bY222Y3

X2 . ~10!

The complexity of the model function has increased
compared to the one of the model functionFx . In this paper,
complexity designates the number of monomials involved in
the model function as well as the order of the nonlinearities
and of the poles. Thus, a model function with a large number
of monomials with high order of nonlinearities or, in a stron-
ger way, with high order for the poles, is more complex than
a model function with few monomials with low order non-
linearities. Note that the model function expresses the cou-
plings between the dynamical variables of the original sys-
tem ‘‘seen from one observable point of view.’’ In the present
case, the denominator is now a second-order polynomial. In
this case, the double singularity is close to the attractor and
effects the shape of its manifold. This creates a region of the
z-induced attractor where different revolutions are not well
distinguished@Fig. 1~c!#. Such a feature will obviously in-
duce some difficulties in investigating the dynamics from the
z-variable. Significant differences between the attractor re-
constructed from thez-variable and the other two~x and
y-variables! can be easily appreciated from Fig. 1.

Note that the coordinate transformationFz is again in-
jective but the determinant of its Jacobian matrixJ(Fz) van-
ishes whenz250. This is again a plane in the original phase
space but its influence on thez induced attractor is more
important since it is an order-2 singularity. On the other
hand, the couplings between the dynamical variables are
more complicated when they are observed from thez vari-
able. The nonequivalence among the dynamical variables is
confirmed when the embedding dimension is computed. For
the x and y-induced phase portraits, such a dimension is

clearly equal to 3 but it is much more difficult to state about
the embedding dimension of thez induced phase portrait
~Fig. 1!.

The observability of the dynamics from a scalar time
series appears to be related to the complexity of the model
function and the presence of singular sets. Based on the com-
plexity of Fx , Fy , andFz the dynamical variables may be
classified asyxxxz, where x means ‘‘provides a better
observability of the underlying dynamics than.’’ It should be
noted that when a global model is attempted using a global
modeling technique, they variable allows to obtain a global
model with relative ease while thez-variable provides a very
difficult test case and so far no three-dimensional global
models have been obtained unless an ad hoc structure is
used.10,11 The previous order is therefore strongly related to
the difficulty to obtain a global model from a scalar time
series.

For the Ro¨ssler system, which has no symmetry, the ob-
servability indices convey significant information. We saw
that they turns out to be the best variable while, on the other
handz, is by far the worst. This can be confirmed in a num-
ber of ways, as for instance the easiness with which one can
obtain a global model10 or the possibility of synchronizing. A
direct substitution synchronization scheme is only successful
if the y variable is used as the driving signal.8 Even when
synchronization is attempted using adaptative control tech-
niques the conclusion is the same, namely that no synchro-
nization is possible driving the slave system either with thex
or the z variables.14 The possibility or easiness of synchro-
nization will not only depend on observability but will also
be effected by the way synchronization is attemped. For in-
stance, if proportional linear negative feedback is used in-
stead of direct substitution it is possible to synchronize two
Rössler systems. However, if the variablex is used it will
require greater effort to synchronize~with the same perfor-
mance! than if y is used. Hence, although there seems to be
some relation between observability and synchronization we
cannot, now, make any generalization.15,16

The nonequivalence between the dynamical variables of
a system can be made somewhat by quantifying the observ-
ability with an index as introduced in Refs. 9 and 10. The
concept of observability in linear system theory is
standard.9,17 Consider the system,

ẋ5Ax1Bu, s5Cx, ~11!

wherexPRn is the state vector,sPRr is the measurement
vector,uPRp is the input vector, and$A,B,C% are constant
matrices. For a nonlinear system,A is the Jacobian matrix of
that system,B is the matrix defining the coupling between
the system, and an external contraint andC defines the mea-
surement function designated byh. In all the cases here in-
vestigated, the systems are autonomous, i.e.,B50 or u50.
Thus the system~11! is said to be state observable at timet f

if the initial state x(0) can be uniquely determined from
knowledge of a finite time history of the outputy(t), 0<t
<t f ,17 since the inputu(t)50.

One way of testing whether the system~11! is observ-
able is to define theobservability matrix˙,

FIG. 1. The three induced phase portraits from the dynamical variables of
the Rössler system using the derivative coordinates and the estimations of
their embedding dimension by using the false nearest neighboor methods.
(a,b,c)5(0.398,2.0,4.0). The embedding dimensions are computed using
delay coordinates from a time series recorded with a sampling rate equal to
0.01 s.
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Q5F C
CA
CA2

]

CAn2r

G . ~12!

The system~11! is therefore state observable if matrixQ is
full rank, that is if rank(Q)5n. This definition is a ‘‘yes’’ or
‘‘no’’ measurement of observability, that is, the system is
either observable or not. In practice, however, a system may
gradually become unobservable as a parameter is varied or,
for nonlinear systems, it seems reasonable to suppose that
there are regions in phase space that are less observable than
others. We quantify the degree of observability with the ob-
servability index, defined as

d~x!5
ulmin@QQT,x~ t !#u
ulmax@QQT,x~ t !#u

, ~13!

wherelmax@QQT,x(t)# indicates the maximum eigenvalue of
matrix QQT estimated at pointx(t) ~likewise for lmin! and
(•)T indicates the transpose. Then 0<d(x)<1, and the
lower bound is reached when the system is unobservable at
point x. It should be noticed that the index~13! is a type of
condition number of the observability matrix. The matrixA
takes into account the coupling between the original dynami-
cal variables while the matrixC corresponds to the measure-
ment functionh. If the measurement function is defined by
an identity matrix, the dynamics is completely observable.
When a single variable is measured, matrixC becomes a row
vector and is directly responsible for any decrease in observ-
ability.

From the definition, it becomes clear thatd(x) is a local
measure, which obviously depends on the pointx in state
space where the system is. To see this more clearly, Fig. 2
shows the local observability indicesdx , dy , and dz pro-

FIG. 2. ~a! The Rössler attractor.~b!, ~c!, and~d! are, respectively, the local observability indicesdx , dy , anddz projected onto thex3y plane. Higher peaks
indicate higher observability. Recall thatdx is the observability attained when observing the system only through variablex(t).
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jected onto thex3y plane. Higher peaks indicate higher ob-
servability.

The following remarks can be made. When observing
the system through variablex(t), the least observable part of
the attractor is precisely when the trajectories start to depart
from the neighborhood of thex3y-plane because the sheet-
like vertical part of the attractor faces they-axis and can only
be seen sideways from thex-axis. This explains why the
observability indexdy does not decrease in that part of the
attractor. For a similar reason, the observability from thez
variable is very low in parts of the attractor that are in the
neighborhood of thex3y-plane, as seen in Fig. 2~d!.

It is also interesting to notice that the plots in Fig. 2 are
in agreement with Eqs.~5!–~10!. In particular, consider the
model functionFx that results when the dynamics of this
system are reconstructed from thex variable only. From Eq.
~8! it is clear that such a function becomes singular atx5a
1c. The aforementioned plots were obtained fora50.398,
b52.0, andc54.0. Therefore the singular plane is (xux
54.398), which agrees with the least observable region seen
in Fig. 2~b!. Similarly, Eq. ~10! becomes singular atz
50.0, that is, at thex3y-plane. This can be clearly seen
comparing Fig. 2~a! and Fig. 2~d!. Finally, funcion~6! does
not become singular at any point in space thus resulting in
great observability at any point on the attractor as seen in
Fig. 2~c!.

The observability indices illustrated in Figs. 2~a!–2~c!
were calculated along a trajectory embedded in the Ro¨ssler
attractor. We obtain basically the same result whether we
calculate the observability indices using a single increasingly
long trajectory, or an increasingly large set of trajectories
starting from random initial conditions~Fig. 2!. This sug-
gests ergodicity, at least to some extent.

It will be convenient to summarize the observability at-
tained from a given variable using an average value. In this
respect, the two following possibilities should be considered:

dI 5
1

T (
t50

T

d~x~ t !! ~14!

and

d̄5

1

T
(
t50

T

lmin@QQT,x~ t !#

1

T
(
t50

T

lmax@QQT,x~ t !#

, ~15!

where T is the final time considered and, without loss of
generality the initial time was set to bet50.

For the three dynamical variables of the Ro¨ssler system
~4!, the observability indices averaged in both ways are
shown in Table I for comparison.

From Table I both ways of estimating the observability
indices yield results which are within one standard deviation
from each other. This suggests that the error is not statisti-
cally significant. However, for the sake of presentation, un-
like Ref. 10, it will be preferred to used̄ rather thandI be-
cause this seems to be somewhat closer in spirit to the
procedure followed in estimating Lyapunov exponents. Also,

from the values in Table I, the variables can be ranked in
descending degree of observability according to

yxxxz, ~16!

which precisely agrees with the sequence found in Sec. II
where the complexity of model functionsF i was investi-
gated in a rather detailed way.

As a final observation on the indices, we simulated the
Rössler system with the same parameter values and over the
same length of time, but with one hundred random initial
conditions, yielding one hundred different values ofd̄. Tak-
ing the ensemble average and standard deviation then gave
us an idea of how sensitive the calculations are with respect
to initial conditions. The ensemble averages with respective
standard deviations wereE@ d̄x#50.02264.431024, E@ d̄y#

50.13361.1310216, and E@ d̄z#52.03102466.431026.
These results show that whereas the ensemble average is
very close to the time average~see Table I!, that is, along the
trajectory, the ensemble standard deviation is typically two
orders of magnitude smaller than the counterpart take along a
trajectory. Again, this suggests that the observability index is
ergodic.

In what follows d̄ will be calculated for several systems
with diverse dynamical properties. To this end, the time av-
eraged̄ will suffice. The reader should bear in mind, how-
ever, that the observability indices are local quantities and
that taking the average is useful inasmuch as it portrays an
overall picture but, on the other hand, plots like those in Fig.
2 could be used to give more details on how the observability
varies along the attractor.

III. PROPERTIES

A. Relevance of the nature of couplings

In the previous section, we only investigated the case
where the observable is one of the dynamical variables of the
original system, i.e., when theC-matrix corresponding to the
measurement function has a single diagonal element equal to
1, all the others being equal to zero. This is a very particular
case and, in practice, the measurement function may also be
a combination of the dynamical variables. For instance, let us
assume that the Ro¨ssler system is now rewritten in the phase
space spanned by the coordinate sets reading as

x85y1z, y85z1x, z85x1y. ~17!

The Rössler system may then be rewritten under the form,

ẋ85 1
2 @~12a1c!x81~a211c!y8

2~11a1c!z822b1 1
2 ~~x82y8!22y82!#,

TABLE I. Observability indices for the Ro¨ssler system averaged in different
ways. Thes indicates the respective standard deviation.

dI 6sd d̄6sd

dI x50.02560.014 d̄x50.02260.014
dI y50.13361.7310214

d̄y50.13361.7310214

dI z50.01060.024 d̄z51.93102460.024
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ẏ85
a

2
@~a21!x81~12a!y81~a11!z8#2x8, ~18!

ż85b2@b2 1
4 ~~x82z8!2

12c~x81y82z8!2y82!#~c1x8!.

This system has the same fixed points than the original
Rössler system and, consequently, the same manifold. But
the coupling between the dynamical variables (x8,y8,z8) are
completely different than the ones between the original dy-
namical variables. Each dynamical variable corresponds to
an observable composed of two dynamical variables of the
original Rössler system according to

x85s5h~x!5y1z, y85s5h~x!5z1x,
~19!

z85s5h~x!5x1y.

This coordinate transformation corresponds to a rotation of
the attractor in the phase space. For the sake of simplicity,
we will continue the analysis using the dynamical variables
(x,y,z) of the original Ro¨ssler system. For instance, when
the observable is the variablex8, the coordinate transforma-
tion Fx85y1z reads as

Fx85H X5y1z,
Y5b1x1ay2cz1xz,
Z52bc1~a1b!x1~a221!y1~c221!z

2~2c11!xz2z21x2z.
~20!

The determinant of its Jacobian matrix vanishes for a quite
complicated function depending on the system parameters.
This condition defines a singularity of order-3. Moreover, the
coordinate transformationFx8 cannot be inverted in the gen-
eral case and, when the numerical values of the bifurcation
parameters are used, the expression ofFx8

21 is too compli-
cated to be useful. The observability of the dynamics from
this variable would be very poor. A plane projection of the
x8-induced phase portrait is displayed in Fig. 3~a!. The em-
bedding dimension is clearly equal to 4 for each of the dy-
namical variables (x8,y8,z8). From the embedding dimen-

sion point of view, all these variables are equivalent.
Nevertheless, when they are compared to the original vari-
ables (x,y,z) of the Rössler system, the embedding dimen-
sion has increased, meaning that the differential embedding
needs an additional dimension to unfold the attractor without
any ambiguity. Hence it seems reasonable to suggest that the
dynamics look more intricated in the new space.

When they8-variable is taken as an observable, the co-
ordinate transformation reads as

Fy85H X5x1z,
Y52y2z1b1z~x2c!,
Z52b~c11!1~b21!x2ay1c~c11!z

1~122c!xz2yz2z2.

~21!

It has a Jacobian vanishing for

y511~11c!a2b1c~c11!2x~112c1a!

1~3c1a!z1x223xz1z2 ~22!

which defines a singularity of order-1.
Finally, when thez8-variable is the observable, the coor-

dinate transformationFz8

Fz85H X5x1y,
Y5x1~a21!y2z,
Z52b1~a21!x1~a22a21!y

1~c21!z2xz,

~23!

has a Jacobian vanishing for

z5~2c13a2ac2a222!1~a22!x, ~24!

which defines a singularity of order-1. The most interesting
property of these observables is that the model functionsFy8
andFz8 are polynomial. Although there are monomials that
include non integer power of the derivatives, there is no pole
involved and such a function would be less difficult to esti-
mate from data set than for rational functions. Let us note
that the model functionFy8 is much more complicated~a
larger number of terms! than the model functionFz8 .

This analysis in terms of the complexity of dynamical
couplings suggests the observability orderz8xy8xx8.
Again, this analysis is confirmed by the observability indices
which are

dx850.005, dy850.010, dz850.044. ~25!

The indices are effected by this rotation of the attractor
in the phase space although the topology is preserved. What
is modified is in fact the couplings between the dynamical
variables used for describing the attractor. The couplings are
therefore relevant for the nonequivalence between the dy-
namical variables since only a rigid displacement of the at-
tractor has been applied, i.e., the dynamics is not changed at
all. Thus, for a given invariant set, the observability of a
given dynamical system depends crucially on the choice of
the observable.

B. Effects of symmetries

Another important point is to investigate how the sym-
metry properties may effect the observability of a dynamical
system when viewed from a single time series. Indeed, when

FIG. 3. The three induced phase portraits from the rotated Ro¨ssler system
using the derivative coordinates and the estimations of their embedding
dimension by using the false nearest neighbors technique.
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the system under study presents some symmetry properties,
particular features may appear. A system possessing some
kind of symmetry is said to be equivariant, i.e., there is an
operatorG such that

G•f~x!5f~G•x!, ~26!

whereG is a squarem3m matrix defining the symmetry. For
instance, the Lorenz system18 is equivariant. The dynamical
system equations read as

ẋ5s~y2x!, ẏ5Rx2y2xz, ż52bz1xy, ~27!

wheres is the Prandtl number,R is the reduced Rayleigh
number, andb is an aspect ratio of the convection cell. When
the bifurcation parameter values are set to 10.0, 28.0, and
8/3, respectively, the asymptotic behavior settles down onto a
chaotic attractor which is setwise symmetric under a rotation
around thez-axis. In such a case, the operatorG reads as

G5F 21 0 0

0 21 0

0 0 1
G , ~28!

that is, the chaotic attractor is globally invariant under the
map (x,y,z)→(2x,2y,z). Two kinds of dynamical vari-
ables may be distinguished. First, thex and y variables are
mapped to their counterpart under the action of the symme-
try. As a consequence these variables allow to distinguish the
two wings of the attractor. Second, thez-variable is un-
changed under the action of the symmetry. This variable does
not therefore provide any information about the symmetry of
the attractor, i.e., the two wings are not distinguished~Fig.
4!.19

However, the observability indices for this system,

d̄x56.531026, d̄y58.231026, d̄z52.231025,
~29!

would seem to suggest the observability orderzxyxx. For
the Lorenz system a new ingredient plays an important and
fundamental role, namely, the rotation symmetry. In this
case, as argued, the observability indices, as a consequence
of being a local quantity averaged over the attractor, does not
convey all the information required for a more precise analy-
sis. Indeed, the symmetry properties can only be identified at
a global point of view, an equivariant dynamics and its image
without any residual symmetry being locally equivalent.20 As
a matter of fact, because observations of thez-variable actu-

ally mod out the symmetry, it is rather impossible to recover
such a symmetry from a global model obtained through thez
variable. It should be noted however that, disregarding the
fact that such models cannot possibly display a symmetry
which cannot be observed, quite accurate global models from
the thez variable can be obtained quite easily4 ~as suggested
by the high observability index!. The moding out of the ro-
tation symmetry is also quite restrictive from the point of
view of master-slave systems, in which case it is well known
that synchronization fails in a number of different ap-
proaches when thez-variable is transmitted.8,14

We have now to check whether the increase in observ-
ability arises from the modding out of symmetries or from
the lower complexity of couplings. We will therefore con-
sider the case of an equivariant system and its image
system.20 An image system is a system which is dynamically
equivalent to an equivariant system but without any symme-
try properties. The Lorenz system and its image, the so-
called proto-Lorenz introduced by Miranda and Stone21 will
be analyzed.

The image of the Lorenz system may be derived by
modding out the symmetry with the aid of the coordinate
transformation;

C5H u5x22y2,
v52xy,
w5z

~30!

as introduced by Miranda and Stone.21 Such a map is typical
for rotation symmetry byp around thez-axis. The image
system thus reads as

u̇5~2s21!u1~s2R!v1vw1~12s!r,

v̇5~R2s!u2~s11!v2uw1~R1s!r2rw, ~31!

ẇ52bw1 1
2 v,

wherer5Au21v2. It may be easily checked that the attrac-
tor solution of the image system is topologically equivalent
to thez-induced attractor of the Lorenz system~Fig. 5!.

The overall dynamics of the image system is clearly sim-
pler than the original Lorenz system because the former does
not have any symmetries. On the other hand, as can be easily
verified comparing Eqs.~27! and~31!, the couplings between
the dynamical variables (u,v,w) are somewhat more com-
plicated than the couplings among the original dynamical
variables (x,y,z) of the Lorenz system. Such an additional
complexity of the dynamical couplings in the image system
is accompanied by an expected decrease of the observability
indices, which for system~31! are

d̄u51.4431028, d̄v51.6031027, d̄w53.7631027.
~32!

From the stand point of symmetries, the image system is, of
course, more observable than the original Lorenz system,
because when such a system is observed from thew-variable
no symmetry is modded out and there is no ambiguity as to
where the system is in phase space. This confirms that the
observability indices do not convey information about the
system symmetry.

FIG. 4. The three induced phase portraits of the Lorenz system. While thex
and y-induced attractors have an inversion symmetry, thez one does not
have any symmetry.
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To notice that the time evolutions of thez-variable of the
Lorenz system and of thew-variable of the image system are
rigorously identical and, consequently, they provide the same
induced phase portrait spanned by their derivatives. Thus, the
observability indices strongly depend on the couplings be-
tween the dynamical variables, as argued in Sec. II. It should
be mentioned that we do not usually compare the observabil-
ity indices among systems because they do not seem to have
an ‘‘absolute’’ significance. However, an image system is
here compared with its twofold cover, i.e., the proto-Lorenz
system with the Lorenz system. In that case, the dynamics is
equivalent modulo the symmetry properties. Only the sym-
metries induce different couplings between the dynamical
variables.

As a final example, we will focus our attention on a 5D
dynamical system which presents a continuous rotation sym-
metry. The set of Eqs.~33!, shown below, describes a laser
system for which the detuningd between the normalized
steady-state laser frequency and the molecular resonnance
frequency is taken into account.22 It reads as

ẋ152s~x11dx22y1!, ẋ252s~x22dx12y2!,

ẏ15Rx12y11dy22x1z, ~33!

ẏ25Rx22dy12y22x2z, ż52gz1x1y11x2y2 ,

where R is the pumping rate,s is the ratio of the cavity
decay rate of the field in the cavity over the relaxation con-
stant of the polarization, andg is the relaxation constant of
the normalized inversion. (x1 ,x2) are the real and imaginary
parts of the electric field, (y1 ,y2) are real and imaginary
parts of the amplitude of polarization, andz is the normal-
ized inversion.22 The system~33! has one fixed pointF0

located at the origin of the phase space and a continuous set
of fixed points where

x1
21x2

25g~R212d2!,
~34!

y1
21y2

25~11d2!g~R212d2!, z5R212d2.

This set of fixed points is in fact a torusT2. It should be
noticed that thez-variable is unchanged under the action of
the rotation symmetry which acts independently on the
(x1 ,x2) and (y1 ,y2) planes.23 The effect of the continuous
rotation is displayed in Fig. 6 ford50.60.

Figure 7 shows the embedding dimension estimated
from each state variable. Forx1 , x2 , y1 , andy2 , which are
changed under the action of the symmetry, the embedding
dimension is around 5 or 6, whereas the phase portrait in-
duced by thez-variable, which is invariant under the action
of the symmetry, is characterized by an embedding dimen-
sion equal to 3~Fig. 7!. This means that the whole set of
dynamical variables is, in principle, observable from the
variablesx1 , x2 , y1 , andy2 while only three dimensions can
be distinguished when observing the dynamics from the
z-variable. Indeed, when the dynamics is investigated from
thez-variable, the symmetry properties are modded out~Fig.
8! as well as the distinction between thex1 andx2 variables,
and,y1 andy2 . Thus, two dimensions are roughly unobserv-
able.

FIG. 5. The proto-Lorenz system represents an image of the Lorenz system,
i.e., a system with equivalent dynamics but without any symmetry proper-
ties.

FIG. 6. Plane projections of the attractor solution of the laser system~33!
(R524.0, s52.0, g50.25, andd50.1!. The angular velocity depends lin-
early on the detuningd.
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In fact the embedding dimension equal to 3 for the
z-induced phase portrait may be theoretically justified when
the rotation vanishes, that is, when the detuning,d, is set to
zero. In that case, the 5D laser system~33! is reduced to

ẋ152s~x12y1!, ẋ252s~x22y2!,

ẏ152y11Rx12x1z, ẏ252y21Rx22x2z, ~35!

ż52gz1x1y11x2y2 .

The variablesx1 andx2 ~resp.y1 andy2! become iden-
tical and the system is reduced to a slightly modified 3D
Lorenz system,

ẋ52s~x2y!, ẏ52y1Rx2xz, ż52gz12xy. ~36!

The observability indices

d̄x1
55.1931027, d̄x2

55.7931027,

~37!

d̄y1
51.9431027, d̄y2

52.3131027, d̄z54.5231029

seem to confirm the fact that the dynamics is less observable
from thez-variable than from the other variables. An impor-
tant remark should be given here. It is definitely easier to
investigate the laser dynamics from thez-variable, that is
when the symmetries are modded out,19 but in this particular
case, it is not associated with the greater observability index
because two variables are also modded out as clearly exhib-
ited by the estimation of the embedding dimension, which,
due to the symmetry, is less than the dimension of the origi-
nal phase space.

This example brings out the important fact that observ-
ability and embedding dimension are two different things
which are not always correlated. This is also the first ex-
ample where the embedding dimension is less than the di-
mension of the original phase space. This example shows
also that a symmetry of the original phase portrait may in-
duce some lack of observability when a particular observable
is used. For instance, information on detuning cannot be re-
covered from thez-observable. In our experience, systems
with inversion symmetry are harder complicated to investi-
gate than those with an order-2 rotation. In particular, in the
case of a system with an inversion symmetry, the image
without any residual symmetry has often an entangled mani-
fold. This is due to the strong singularity located at the origin
of the phase space. Moreover, we believe that higher the
symmetry order, the less observable the dynamics.

We see from this analysis that our ability to investigate
an equivariant dynamical system depends on the couplings
between the dynamical variablesand the symmetry proper-
ties. Indeed, the observability indices do not convey much
information on symmetry, since they are defined as average
of local quantities along the trajectory. For instance, in the
Lorenz system, it is not possible to determine on which wing
the trajectory is when thez-variable is the observable. No
information on the symmetry of the system is thus available.
This is not a great problem when a no-symmetry global
model is attempted. The obtained model reproduces the dy-
namics of the image system and in such a case only the
complexity of couplings are relevant. Contrary to this, when
synchronization of two Lorenz systems is attempted using
the z-variable as the drive, it is not possible to reach a syn-
chronization state.8,14Such a feature may be explained on the
symmetry properties of the system and not with the observ-
ability indices.

IV. CONCLUSION

This paper has investigated the nonequivalence between
the variables of nonlinear systems for observing the underly-
ing dynamics. We have shown that this is easier using some
variables than with others, and quantified the easiness with
observability indices. The observability indices do not con-
vey much information on symmetry as a consequence of
being defined as averages of local measures along a trajec-
tory. The analysis systems with symmetry may need a global

FIG. 7. Estimation of the embedding dimension using a false nearest neigh-
bors technique for the phase portraits induced by the different dynamical
variables~R524.0, s52.0, g50.25, andd50.1!.

FIG. 8. Plane projection of thez-induced phase portrait spanned by the
derivative coordinates. The same bifurcation parameters than for Fig. 7 are
used. Thez-induced phase portrait~Fig. 8! which is very similar to the
image of the 3D Lorenz system~Ref. 23!.
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measure of observability, or perhaps the spatial distribution
of local observabilities. The observability indices quantify
how much the couplings between the variables departs from
the linearity, as seen through a given observable. They do not
depend on the topology of the attractor but rather on the
orientation of the attractor in the phase space. A complete
analysis, however, must take into account not only the ob-
servability indices but also the symmetry properties. When
the system does not present any symmetries the observability
indices convey much information.

In order to compute the observability indices the system
Jacobian is used and assumed known. Consequently, at the
moment, such indices seem to be well-suited for theoretical
analysis of known systems rather than a practical tool to help
select observables in a practical set-up. The nonequivalence
between the dynamical variables of a given system may ex-
plain many results observed in the litterature. Indeed, it is
now known that the success of obtaining global models de-
pend crucially on the variable chosen as the observable. Such
results may also help choose variables for synchronization.
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