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It is known that the observability of a system depends crucially on the choice of the observable. Locally,
such a feature results directly from the couplings between the dynamical variables �globally, it will also depend
on symmetry�. Using a feedback circuit description, it is shown how the location of the nonlinearity can affect
the observability of a system. A graphical interpretation is introduced to determine—without any
computation—whether a variable provides full observability of the system or not. Up to a certain degree of
accuracy, this graphical interpretation allows us to rank the variables from the best to the worst. In addition to
that, it is shown that provided that the system is observable, it can be rewritten under the form of a jerk system.
The Rössler system and nine simple Sprott systems, having two fixed points, are investigated here.
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I. INTRODUCTION

A system is fully observable from a variable when it is
possible to recover all the dynamical variables of the system.
It has been shown that the observability of a system, that is,
the quality with which the dynamics can be reconstructed
from a measured variable, depends on the choice of the ob-
servable �1�. In particular, it was shown that the observability
depends on the coupling between the dynamical variables.
Nevertheless, only recently the observability was interpreted
in terms of the coordinate transformation between the origi-
nal phase space and the phase space reconstructed using the
derivative coordinates �2�. This allows a meaningful interpre-
tation of the observability conditions in terms of the singu-
larity involved in the coordinate transformation. In other
words, the system is observable when the map between the
original phase space and the reconstructed phase space is a
global diffeomorphism. Moreover, provided that the coordi-
nate transformation is a global diffeomorphism, the nth di-
mensional system can be rewritten under the form of an
n-order scalar ordinary differential equation or, suggestively
speaking, as a jerk system when n=3 �3�. Since full observ-
ability is related to the existence of a global diffeomorphism
between the original phase and the differential embedding
induced by the measured variable �2,4�, it will be shown in
this paper that the observability also allows us to identify
which system can be recast into a jerk system. Some condi-
tions on the algebraic structure of the original system have
been proposed in order to make such a transformation
possible �3�.

Our motivation is very different here. For a given system,
we would like to identify, without any analytical computa-
tion, the best observable for a given set of equations and, in
this way, identify in which variable a system can be rewritten
as a jerk system. Note that to be able to recast a system as a
jerk system opens the possibility of building a global model
from the considered variable �5�. Moreover, being able to
identify the best observable could also be very important
when synchronization �6� or control techniques �7,8� are ap-
plied to a system.

Feedback circuits �9,10� are a natural way to describe the
interactions between the dynamical variables of a set of
equations. Thus, such a description is appropriate to under-
stand how the couplings between the dynamical variables
can affect the observability of a system. Since these cou-
plings are the main ingredient that affects the observability
of a dynamics from a variable, it seems natural to interpret
the observability in terms of feedback circuits. Such an in-
terpretation can be easily done using the graphs displaying
the interactions between the dynamical variables and their
first time derivatives as used by Rössler, for instance �11�.

The paper is organized as follows. Section II briefly re-
views concepts related to observability, coordinate transfor-
mation between the original and the reconstructed phase
spaces, and the possibility of rewriting the system as a jerk
system. Feedback circuits are also reviewed. Section III dis-
cusses how the observability depends on the type of nonlin-
earity involved in the system. Finally, Sec. IV gives a
conclusion.

II. THEORETICAL BACKGROUND

A. Observability, differential embeddings, and jerk systems

Let us start with a nonlinear system

ẋi = f i�x1,x2,x3� �i = 1,2,3� �1�

described in a three-dimensional phase space for the sake of
simplicity and where xi�R3 are the dynamical variables.
Assume that the observable is the variable xi. It is thus pos-
sible to reconstruct the phase space from the time series
�xi�t�� using the derivative coordinates �X=xi, Y = ẋi, Z= ẍi�.
The coordinate transformation between the original phase
space R3�x1 ,x2 ,x3� and the differentiable embedding
R3�X ,Y ,Z� is defined according to
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�i = �
X = xi

Y = f i

Z =
�f i

�x1
f1 +

�f i

�x2
f2 +

�f i

�x3
f3.� �2�

It can be shown that the variables X, Y, and Z are in fact the
Lie derivatives of the observable of order zero, one, and two
�2�. It has been shown that the observability matrix Oi of a
nonlinear system observed using the ith variable is exactly
the Jacobian matrix of the map �i �2�. The system is there-
fore fully observable when the determinant det�J�i

� never
vanishes, that is, when the map �i defines a global diffeo-
morphism ��i must also be injective, a property observed in
most of the cases�.

When det�J�i
� never vanishes, the map �s can be in-

verted and the system can always be rewritten under the form
of a jerk system,

Ẋ = Y ,

Ẏ = Z ,
�3�

Ż = Fi�X,Y,Z� =
�Z

�x1
f1 +

�Z

�x2
f2 +

�Z

�x3
f3,

where the model function Fi�X ,Y ,Z� is free of singularities
and subscript i designates the variable measured. Otherwise,
a jerk system may be obtained but with some singularities.
When a system can be rewritten as a jerk system without any
singularity, this means that there is a global diffeomorphism
between the original phase space and the induced differential
embedding �3� and, consequently, that the system is fully
observable. In other words, when the system is fully observ-
able, the system can be rewritten as a jerk system.

When a singularity occurs, that is, det�J�i
�=0 for some

condition, the system is not fully observable. A direct conse-
quence is that, provided that the original system is polyno-
mial, it can no longer be rewritten as a polynomial jerk sys-
tem. But it does not preclude rewriting the system as a
rational jerk system. For instance, in the case of the Rössler
system, a rational jerk system can be obtained from the x or
z variable, although the corresponding coordinate transfor-
mations involve a singularity. From that point of view, the
proposed observability condition is a sufficient but not a nec-
essary condition. This is why an observability index was
introduced �1,5�. It was also shown that the degree of non-
linearity is strongly related to the observability index.

B. Feedback circuits

The interactions between the dynamical variables can be
defined using the elements of the Jacobian matrix of the
vector field f i�xj�. Variable xj acts on variable xi when the
term Jij of the Jacobian matrix is nonzero. This action is
positive or negative depending on the sign of element Jij.
These interactions can be displayed as a graph. Each variable
xi is represented by a node Ni. When the variable j is present
in the functions f i, an arrow is drawn from node Nj to node

Ni. When the variable only appears in a linear term, the ar-
row is drawn with a solid line. As soon as a variable appears
in a nonlinear term, the arrow is drawn with a dashed line.
Such graphs were used by Rössler in the early 1970s �11�.

Let us draw the graph for the Rössler system �12�,

ẋ = − y − z ,

ẏ = x + ay ,

ż = b + z�x − c� . �4�

The first equation tells us that variables y and z act linearly
on x. Thus, two arrows coming from nodes Ny and Nz will
reach node Nx with a solid line. The second equation can be
interpreted likewise. The third equation means that there is a
constant input and that variables x and z nonlinearly act on z,
and z acts linearly on z. Thus there is a dashed arrow from
node Nx to node Nz and one dashed arrow from node Nz to
itself. The latter arrow represents the action of the variable
on its own derivatives. When the system is fully observable
from a variable, the corresponding variable is encircled. The
whole graph is shown in Fig. 1. The solid arrow not coming
from a node represents the constant input b in the third equa-
tion.

The Rössler system is fully observable from variable i if
det�J�i

� never vanishes. In the case of the y variable, the
coordinate transformation between the original phase space
and the differential embedding induced by the y variable
reads as

�y = �X = y

Y = x + ay

Z = ax + �a2 − 1�y − z ,
� �5�

so the determinant of its Jacobian matrix

det	0 1 0

1 a 0

a a2 − 1 − 1

 = + 1 �6�

never vanishes. The Roössler system is therefore fully ob-
servable from the y variable. Consequently, the Rössler sys-
tem can thus be rewritten as the jerk system �13,14�,

Ẋ = Y ,

FIG. 1. Graph of the interaction between the dynamical vari-
ables for the Rössler system. A solid �dashed� arrow represents a
�non�linear coupling. When the system is fully observable from a
variable, the corresponding variable is encircled.
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Ẏ = Z ,

Ż = − b − cX + �ac − 1�Y + �a − c�Z − aX2 + �a2 + 1�XY

− aXZ − aY2 + YZ . �7�

As mentioned above, these features are indicated by the
circle around y �node Ny� in Fig. 1. That is, since det�J�y

�
�0 over all the state it can be written as a jerk system and
therefore the y variable is encircled in Fig. 1.

III. OBSERVABILITY AND THE COUPLINGS BETWEEN
THE DYNAMICAL VARIABLES

In his systematic search for simple equations, Sprott ob-
tained 19 systems �15�. Among them, we choose to investi-
gate the nine that have two fixed points and no symmetry
property, such as the Rössler system. They are reported with
the three determinants of the Jacobian matrix of the coordi-
nate transformation between the original phase space
R3�x ,y ,z� and the differential embedding R3�s , ṡ , s̈� induced
by the variable s �s=x, y or z� and the graph displaying the
couplings between their variables in Table I. Such determi-
nants are labeled �s=det�J�s

�.
It has been shown that the topology of the graph allows us

to define some equivalence classes, that is, two systems that
have the same graph structure, irrespective of the type of
coupling �it can be linear—solid arrows—or nonlinear—
dashed arrows�, are dynamically equivalent. This means that
both systems have chaotic attractors which are topologically
equivalent and the main sequences of bifurcations identified
in the bifurcation diagram are the same. Sprott systems are
listed in Table I according to these classes.

When a variable is measured, it is known for sure. Taking
one of its successive time derivatives corresponds to moving
along the arrows �that reach this variable� in the opposite
direction �contrary to the arrow�.

Example 1. For instance, assume the y variable of the
Rössler system is measured. Taking its first derivative allows
us to reach the x variable but not the z variable since there is
no arrow from Nz to Ny. It is necessary to take the second
derivative of y to finally reach node Nz, since there is an
arrow from Nz to Nx. Since all arrows involved from y to z
are solid lines, that is, the z variable is seen from y through
linear couplings, the system is fully observable. This can be
viewed in Fig. 2, where the paths from the measured variable
toward the others are displayed as successive derivatives are
taken. Figure 2 is an “unfolded” version of the graph shown
in Fig. 1. The path from the y variable reaches variables x
and z through solid arrows. The dynamics is therefore fully
observable.

Let us start now from the measurement of the x variable
of the Rössler system. Taking its first derivative allows us to
reach both y and z through solid arrows between nodes Ny
and Nx and Nz and Nx, respectively. But at least three vari-
ables are required to fully describe a three-dimensional sys-
tem. The second derivative is thus computed. It allows to
travel contrary to the dashed arrow between Nx and Nz �Figs.
1 and 2�. A nonlinearity is thus involved in the computation

and a singularity will occur. This can be checked in comput-
ing the coordinate transformation,

�x = �X = x

Y = − y − z

Z = − b − x − ay + cz − xz
� �8�

and the determinant of its Jacobian matrix,

det��x� = det	 1 0 0

0 − 1 − 1

− 1 − z − a c − x

 = x − �a + c� . �9�

This determinant vanishes for x=a+c. The corresponding
plane is therefore singular, that is, the coordinate transforma-
tion between the original phase space R3�x ,y ,z� and the dif-
ferential embedding R3�x , ẋ , ẍ� induced by the x variable is
not defined for the plane x=a+c. As suggested by Takens’
theorem �16�, the dimension must be increased to remove
this singularity as shown in �4�.

Each time a dashed arrow is visited, a nonlinearity occurs
and, consequently, there is a nonconstant element in the
Jacobian matrix. A singularity thus exists in the coordinate
transformation. This implies that each time a dashed arrow is
visited contrary to the arrow, the dimension of the phase
space must be increased at least by 1 to remove the singu-
larity. The increase of the dimension will depend on the type
�mainly the order� of the nonlinearity.

In the case of the x variable of the Rössler system, it has
been shown that using a four-dimensional differential em-
bedding induced by the x variable allows us to recover a
global diffeomorphism �4,5�.

From the graph point of view, the problem is similar when
the z variable is measured. A dashed arrow is visited to reach
the x variable. But this case is worse than from the x vari-
able. This can be seen as follows. We draw all the possible
paths visiting the arrows in opposite direction for each in-
duced differential embedding. These paths are shown in Fig.
2, where it appears that nonlinearities are already involved in
the first derivative of variable z. All the nonmeasured vari-
ables of the Rössler system are therefore recovered through
nonlinear couplings. This is obviously worse than when the x
variable is measured since the two nonmeasured variables
are recovered through linear couplings. Moreover, the non-
linearity only appears in the second derivative from the cou-
pling between the x and z variables. It is therefore possible to
rank the variables according to the quality of the observabil-
ity of the system they provide as done using the observability
indices �1,5�. The sooner a dashed arrow is visited in its
opposite direction, the less observable the system will be
through this variable. In the simple example of the Rössler
system, the schematic view in Fig. 2 suggests to rank the
variables as y�x�z. This agrees with the observability indi-
ces �x=0.022, �y =0.133, and �z=0.0063 �2�.

From Table I, we found that for all systems, the system is
fully observable from a variable when a path can be drawn
from its associated node to all of the other nodes only mov-
ing along solid arrows.

Example 2. The case of multivariate embeddings �4� can
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TABLE I. Sets of equations investigated here with the Jacobian of the �i coordinate transformation �i between the original phase space
and the phase space reconstructed from the ith variable using the derivative coordinates. It is indicated when the system is fully observable,
that is, when �i defines a global diffeomorphism and that a jerk system can be written from this variable. Since we sometimes applied a
permutation between the dynamical variables to show in a better way the similarities between the Sprott systems, we indicated �if different�
in parentheses the corresponding variable in their original presentation �and as in Ref. 3�.
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also be intrepreted in terms of feedback circuits. We will
limit ourselves to the case of three-dimensional embeddings.
When x is simultaneously measured, with another variable y
or z, we have six different possibilities to reconstruct a three-
dimensional phase space of the Rössler system. Using this
graph representation, we checked for each of the possibilities
whether the system is fully observable. The results are

Embedding R3�x, ẋ,y� observable,

Embedding R3�x,y, ẏ� not observable,

Embedding R3�x, ẋ,z� observable,

Embedding R3�x,z, ż� not observable,

Embedding R3�y, ẏ,z� observable,

Embedding R3�y,z, ż� not observable.

All these results are in agreement with the formal framework
recently reported in �4�.

Example 3. A more complicated case can be investigated.
It corresponds to the four-dimensional hyperchaotic Rössler
system �17�. The equations are

ẋ = − y − z ,

ẏ = x + ay + w ,

ż = b + xz ,

ẇ = − cz + dw , �10�

and the determinants �i of the Jacobian matrix of the coor-
dinate transformation between the original phase space

R4�x ,y ,z ,w� and the induced differential embeddings
R4�s , ṡ , s̈ ,s�� are

�x = ad − c − �a + d�x − y − z + x2,

�y = d2 − d�1 + c�x + �1 + 2c�z + c2z ,

�z = z3,

�w = − c3z2. �11�

From �i’s, there is no variable which provides a full observ-
ability of the system. This can be easily observed from the
graph displaying the couplings between the dynamical vari-
ables �Fig. 3� since, according to our rules, a dashed arrow is
visited from any variable when the first three derivatives are
computed. This suggest that for nonlinear systems, the higher
the dimension the less likely it is to have full observability.

Let us now see whether the variables can be ranked or not
using our graphical interpretation. According to our repre-
sentation, the couplings between a variable and the others
through the derivatives can be drawn as shown in Fig. 4. The
two extreme variables are the y variable, which only involves
nonlinear coupling when its third derivative is computed, and
the z variable, which involves nonlinearities when its first
derivative is computed. The y variable is thus expected to be
the best observable for the hyperchaotic Rössler system. This
is confirmed by computing the observability indices, which
are �2�

�x = 2.2 � 10−4,

�y = 9.0 � 10−4,

�z = 1.3 � 10−7,

�w = 2.1 � 10−4. �12�

These indices lead to the observability order

y�x�w�z . �13�

The rank of the z variable also confirms that this is the worst
variable. The two remaining variables, x and w, both involve
nonlinearities when their second derivatives are computed.

FIG. 2. Unfolded schematic view of the variables reached when
the first and the second derivative are computed. Involving a non-
linearity in the first derivative �a dashed arrow between the observ-
able and its first derivative� induces a more serious lack of observ-
ability than when a nonlinearity occurs in the second derivative �a
dashed arrow between the first and the second derivatives of the
observable�.

FIG. 3. Graph showing the couplings between the dynamical
variables of the hyperchaotic Rössler system.
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From our graph interpretation, it is not possible to rank them
because both have nonlinearities occurring in the second de-
rivative. It is interesting to notice that the observability indi-
ces �x and �w are almost the same. Again, when estimated
from our graph representation—without any analytical
computation—the ordering of the dynamical variables of the
hyperchaotic Rössler system according to their ability to re-
cover the nonmeasured variables is in very good agreement
with the order estimated with the observability indices as in
�2�.

Note that the method can be extrapolated to arbitrary di-
mension. From the simple case of the hyperchaotic Rössler
system, it appears that, in a general way, the observability
decreases when the dimension of the system increases. This
results from the complexity of the couplings between the
dynamical variables as suggested in Fig. 4, thus limiting the
possibility of having an algebraic structure allowing the sys-
tem to be fully observable from a single variable.

IV. CONCLUSION

Using a graphical representation of the couplings between
the variables, we showed that the observability is strongly
related to the nature of the nonlinearity and how the dynami-
cal variables are coupled. The graphs displaying the interac-
tion between the dynamical variables can be used to deter-
mine the best observable without any computation. They can
be roughly ranked when the graph is unfolded.

Beside this, links were established between the observ-
ability, the ability to rewrite the system as a jerk system, and
the coordinate transformation between the original phase
space and the reconstructed phase space spanned by the de-
rivative coordinates. These results are believed to be relevant
in various problems such as model building, synchronization,
and state estimation.
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