A tentative history of conservative chaos

Christophe Letellier

George Hill (1838-1914)
> Solutions investigated as a trajectory in the state space
$>$ Solutions structured around the singular points - Stability analysis
$>$ Starting with periodic orbits
$>$ Poincaré section for investigating periodic orbits - First-return map
> Aperiodic solution near homoclinic orbit
> Homoclinic entanglement : too complicated to be drawn!
$>$ Sensitivity to initial condition
> Recurrene theorem

Continuator of Poincaré's works
> Recurrent behaviors
$>$ Ergodic theory

David Birkhoff (1884-1944)
> Many-body systems can often be solved analytically!
DYNAMICAL SYSTEMS

GEORGE D. BIRKHOFF, Ph.D., Sc.D. Mgorzssor or mathematics

1923

Hamiltonian systems are in general ergodic!
§. 1.
$q_{1} q_{3} \ldots q_{n}$ le sue coordinate meccanico normale, e siano menti ad esse coniugati. Rappreserali, $p_{1} p_{2} \cdots p_{n}$ i moun punto di uno spazio Γ Rappresenteremo le q e le p con P di questo spazio I a $2 n$ dimensioni. Per le p con P di questo spazio passa una curva C der ogni punto
delle posizioni successivamente assunte dal determinata, luogo
tativo del sistema, che ba le coordinate dal panto rappresen-
Enrico Fermi
(1901-1954)

Mathematical Analyzer, Numerical Integrator and Computer

Andrei Kolmogorov (1903-1987)
 Vladimir Arnol'd (1937-2010)

Under small non-integrable perturbations
of the Hamiltonian, nearly linear systems are in general quasi-periodic

$$
\mathcal{H}=\mathcal{H}_{0}+\varepsilon P
$$

\mathcal{H}_{0} is integrable and produces invariant tori \mathcal{H} still has a large set of invariant tori
$>$ Improve the proof proposed by Kolmogorov
> He switched from a few-body problem to a map from the circle to itself (most likely under a suggestion from Boris Chirikov)

Boris Chirikov (1928-2008)
There are zones of instabilities where the
separatrices of hyperbolic points intersecting
each other creates intricate network.

$>$ Heteroclinic tangle in the zone of instability of a Poincaré section of a circle map

МАТЕМАТИЧЕСКАЯ ФИЗИКА
в. К. МЕЛЬНИКОв

On lines of force in a magnetic field
(Представлено академиком Н. Н. Боголюбовым 3 III 1962)
Как известно, вопрос о движении плазмы в заданном магнитном поле может быть в некотором приближении исследован с помощью нахождения силовых линий этого поля. Этим объясняется тот интерес, который вызывает в настоящее время проблема нахождения силовых линий определенного типа магнитных полей.

$>$ Heteroclinic tangle as drawn by Vladimir Mel’nikov

Joseph Ford (1927-1995)

Joseph Ford and John Waters
School of Physics, Georgia Institute of Technology, Atlanta, Georgia (Received 7 January 1963)

Weakly coupled systems of N oscillators are investigated using Hamiltonians of the form

$$
H=\frac{1}{2} \sum_{k=1}^{N}\left(p_{k}^{2}+\omega_{k}^{2} q_{k}^{2}\right)+\alpha \sum_{i, k, l=1}^{N} A_{j k l} q_{j} q_{k} q_{l}
$$

where the $A_{i k l}$ are constants and where α is chosen to be sufficiently small that the coupling energy never exceeds some small fraction of the total energy. Starting from selected initial conditions, a computer is used to provide exact solutions to the equations of motion for systems of $2,3,5$, and 15 oscil lators. Various perturbation schemes are used to predict, interpret, and extend these computer results. In particular, it is demonstrated that these systems can share energy only if the uncoupled frequencies ω_{k} satisfy resonance conditions of the form

$$
\sum n_{k \omega_{k}} \lesssim \alpha
$$

for certain integers n_{k} determined by the particular coupling. It is shown that these systems have N normal modes, where a normal mode is defined as motion for which each oscillator moves with essentially constant amplitude and at a given frequency or some harmonic of this frequency. These systems are shown to have, at least, one constant of the motion, analytic in q, p, and α, other than the total energy. Finally, it is demonstrated that the single-oscillator energy distribution density for a 5 -oscillator linear and nonlinear system has the Boltzmann form predicted by statistical mechanics.

> Puzzled by the antagonism between Fermi's 1927 result and the 1955 simulations by Fermi, Pasta, Ulam and Tsingou...
> Check that only periodic or quasi-periodic motions are found

Fig. 7. The E_{k} for the 5 -oscillator system using the FPU frequencies $\omega_{k}=2 \sin (k \pi / 12)$. Initially, five units of kinetic energy were given to oscillator 1 . The system has a recurrence time of about $35 T_{5}$, and oscillators 4 and 5 receive little energy.

Atlanta, 1973:
Morizaku Toda and his wife, Joseph Ford, X, \& Giulio Casati

Vibration of a Chain with Nonlinear Interaction

Morikazu TodA

Department of Physics, Faculty of Science, Tokyo University of Education, Tokyo (Received September 27, 1966)

$>$ Chain of particles

$$
m \ddot{u}=-\phi^{\prime} \underbrace{\left(u_{n}-u_{n-1}\right)}_{=r}+\phi^{\prime}\left(u_{n}-u_{n-1}\right)
$$

with $\phi(r)=\frac{a}{b} e^{-b r}+a r+$ const.

Progress of Theoretical Physics, Vol. 50, No. 5, November 1973
On the Integrability of the Toda Lattice

Joseph FORD, Spotswood D. STODDARD and Jack S. Turner*
School of Physics, Georgia Institute of Technology Atlanta, Georgia 30332
*Center for Statistical Mechanics and Thermodynamics
University of Texas, Austin, Texas 78712

(Received May 7, 1973)

Fully integrable

Michel Hénon
(1913-2013)
at the Institut of Astrophysics in Paris
the astronomical journal
The Applicability of the Third Integral Of Motion: Some Numerical Experiments

Michel Hénon* and Carl Heiles
Princeton University Observatory, Princeton, New Jersey
(Received 7 August 1963)

The Hénon-Heiles system

$$
\left\{\begin{aligned}
\dot{x} & =V_{x} \\
\dot{V}_{x} & =-x-2 x y \\
\dot{y} & =V_{y} \\
\dot{V}_{y} & =-y-x^{2}+y^{2}
\end{aligned}\right.
$$

derived from the Hamiltonian
$\mathcal{H}=\frac{V_{x}^{2}+V_{y}^{2}}{2}+\underbrace{\frac{x^{2}+y^{2}}{2}+x^{2} y-\frac{2}{3} y^{3}}_{=u(x, y)}$

Carl Heiles (1939-)

George Contopoulos

THE "THIRD" INTEGRAL IN NON-SMOOTH POTENTIALS

G. Contopoulos
University of Thessaloniki

AND
L. Woltjer

Department of Astronomy, Columbia University, New York, New York
Received March 25, 1964

ABSTRACT

In this paper the theory of the "third" integral is developed for the case of potentials of the form of a wave parallel to the y-axis, or the product of two waves parallel to the x - and y-axes, superimposed over a smooth potential. The "third" integral is constructed step by step as a series whose terms are multiple series in the coordinates and velocities. It is proved that these multiple series converge and no secular terms ever appear, but the question of the convergence of the "third" integral is left open.

Numerical integrations show that if the amplitudes of the waves are sufficiently small the orbits have a well-defined boundary for long time intervals. This is an indication that the third integral is isolatingor nearly isolating-in these cases. As the amplitude of the waves increases the orbits become quasiisolating and finally ergodic.

This trajectory is ergodic

topologie. - Sur la topologie des écoulements stationnaires des fluides parfaits. Note (*) de M. Vhadmin Arnold, présentée par M. Jean Leray.

You will find below a method for designing canonical maps T suitable for numerical experiments.

 onsidère les écoulements stationnaires d'un fluide parfait, incompressible isqueux, dans un domaine borné D. On suppose que le vecteur vitesse n'est out colinéaire au vecteur rotation. On démontre alors que le domaine D est ar certaines surfaces et courbes, en un nombre fini de "cellules "ouvertes, n tores ou en cylindres engendrés par des lignes de courant. Les lignes de sont fermées sur les cylindres, fermées ou denses sur les tores.```
determiment aussi ternsfoun-C'application
```

Pour certains fonctions $S^{\prime}$, mall
mai's j'éspere yue so "amive pass


Théorème 2. - Soit $\varphi$ le champ de sitesse d'un écoulement stationnaire d'un fluide parfait dans $\mathrm{D}(乡, \mathrm{D}, \partial \mathrm{D}$ sont analytiques réels $)$. Si $\varphi$ n'est pas partout colinéaire au vecteur rotation, alors presque toutes les lignes de courant sont fermées ou partout denses sur des tores analytiques réels plongés dans D ; les autres lignes de courant forment un orai sous-ensemble analytique compact de D .

A stationary flow for a perfect fluid

$$
\begin{aligned}
& \vec{V} \wedge(\vec{\nabla} \wedge \vec{V})=\vec{\nabla} \alpha \\
& \vec{\nabla} \cdot \vec{V}=0 \\
& \alpha=P+\frac{1}{2} \rho V^{2}
\end{aligned}
$$

## Suggested example

$$
\left\{\begin{array}{l}
\dot{x}=A \sin z+C \sin y \\
\dot{y}=B \sin x+A \cos z \\
\dot{z}=C \sin y+B \cos x
\end{array}\right.
$$



MÉCANIQUE CÉLESTE. - Sur la topologie des lignes de courant dans un cas particulier. Note (*) de M. Mıchel Hénos, présentée par M. André Lallemand.

On étudie sur un exemple numérique la forme des lignes de courant dans un fluide parfait en écoulement stationnaire, obéissant à l'équation : $\operatorname{rot} \vec{v}=\lambda \vec{v}, \lambda=$ Cte, Un problème analogue est présenté par les champs magnétiques à force de Lorentz nulle. On trouve que certaines lignes de courant sont inscrites sur une surface, tandis que d'autres remplissent une région à trois dimensions.

Michel Hénon
(1913-2013)

$$
\left\{\begin{array}{l}
\dot{x}=A \sin z+C \sin y \\
\dot{y}=B \sin x+A \cos z \\
\dot{z}=C \sin y+B \cos x
\end{array}\right.
$$

$$
\begin{gathered}
A=\sqrt{3} \\
B=\sqrt{2} \\
C=1
\end{gathered}
$$




Boris Chirikov (1928-2008)


Felix Izrailev (1928-2008)

## RESONANCE PROCESSES IN MAGNETIC TRAPS*

B. V. Chirikov

Abstract-Consideration is given to resonances between the Larmor rotation of charged particles and their slow oscillations along the lines of force. Under certain conditions these resonances can result in a complete exchange of energy among the degrees of freedom of the particle, so that the particle escapes from the trap. The influence of resonances on adiabatic processes associated with a time variation of the magnetic field is also examined.
$>$ Larmor rotation of charged particles
$>$ A criterion for stochasticity

$$
\left(\frac{\Delta \omega_{r}}{\Delta d}\right)^{2}>1 \quad \Delta \omega_{r} \text { frequency width of the unperturbed resonance }
$$

$\Delta d$ difference between the frequencies of two unperturbed resonances
$>$ Application to the Fermi-Pasta-Ulam-Tsingou problem
STATISTICAL PROPERTIES OF A NONLINEAR STRING
F. M. Izrailev and B. V. Chirikov

Novosibirsk State University
(Presented by Academician M. A. Leontovich, May 3, 1965)
Translated from Doklady Akademii Nauk SSSR, Vol. 166, No. 1,
pp. 57-59, January, 1966
Original article submitted April 28, 1965


## Joseph Ford

(1927-1995)

# Amplitude Instability and Ergodic 

Behavior for Conservative Nonlinear Oscillator Systems*
Grayson H. Walker and Joseph Ford
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (Received 27 March 1969)

Several earlier computer studies of nonlinear oscillator systems have revealed an amplitude instability marking a sharp transition from conditionally periodic to ergodic-type motion, and several authors have explained the observed instabilities in terms of a mathematical theorem due to Kolmogorov, Arnol'd, and Moser. In view of the significance of these results to several diverse fields, especially to statistical mechanics, this paper attempts to provide an elementary introduction to Kolmogorov-Arnol'd-Moser amplitude instability and to provide a verifiable scheme for predicting the onset of this instability. This goal is achieved by demonstrating that amplitude instability can occur even in simple oscillator systems which admit to a clear and detailed analysis. The analysis presented here is related to several earlier studies. Special attention is given to the relevance of amplitude instability for statistical mechanics.

## Chaotic sea in the Fermi-Pasta-Ulam-Tsingou problem



Theory of Nonlinear resonance and stochasticity

The standard map

$$
\left\{\begin{array}{l}
\omega_{n+1}=\omega_{n}+\epsilon \cos 2 \pi \Psi_{n} \\
\Psi_{n+1}=\Psi_{n}+\frac{T}{2 \pi} \omega_{n+1} \quad(\bmod 1)
\end{array}\right.
$$



8 a


RESEARCH CONCERNING THE THEORY OF NON-LINEAR RESONANCE AND STOCHASTICTTY
B.v. Chirikov

Novosibirsk, 1969

CHEERS \& REEERS

> Toulouse, 1973, September 10-14


Christian Mira
$\rightarrow$ A 2D map

$$
\left\{\begin{array}{l}
x_{n+1}=y_{n}+F\left(x_{n}\right) \\
y_{n+1}=-x_{n}+F\left(x_{n+1}\right)
\end{array}\right.
$$

with

$$
F\left(x_{n}\right)=\mu x_{n}+(1-\mu) x_{n}^{3}
$$

CHEERS \& De


$\mu=0.0198$

SUR LES COURBES INVARIANTES FERMÉES DES RÉCURRENCES NON LINÉAIRES VOISINES D'UNE RÉCURRENCE LINÉAIRE CONSERVATIVE DU $2^{\circ}$ ORDRE
C. MIRA

Laboratoire d'automatique et d'analyse des systèmes


> Heteroclinic tangle
> Toulouse, 1973, September 10-14
> Another 2D map

$$
\left\{\begin{aligned}
x_{n+1}= & y_{n}+F\left(x_{n}\right)+\alpha\left(1+a y_{n}^{2}\right) \\
y_{n+1}= & x_{n}+F\left(x_{n+1}\right)
\end{aligned}\right.
$$



[^0]CHEERS \& PREDR

> Toulouse, 1973, September 10-14

## STABILITY OF AREA-PRESERVING MAPPINGS

## EMPIRICAL DETERMINATION <br> OF INTEGRABILITY

FOR NONLINEAR OSCILLATOR SYSTEMS

USING AREA-PRESERVING MAPPINGS*


James H. BARTLETT of Physics, University of Alabama University, Ala., 35486 U.S.A


Joseph FORD
of Physics, Georgia Institut gy, Atlanta, Georgia, 30332 U.S.A.

Colloques Internationaux du C.N.R.S. ansformations ponctuelles et leurs applications

## ÉTUDE NUMÉRIQUE

DE TRANSFORMATIONS PLANES DISCRÈTES CONSERVANT LES AIRES


## Françoise RANNOU

que Stellaire, observatoire de Nice Mont-Gros 06300 NICE France

## CHEERS \& DEDERS


> Toulouse, 1973, September 10-14

QUELQUES RÉSULTATS NUMÉRIQUES
SUR L'EXISTENCE, LA DIMENSION
ET LA DISPARITIÓN
DES VARIÉTÉS INVARIANTES
D'UNE TRANSFORMATION
A QUATRE ET A. SIX DIMENSIONS CONSERVANT LA MESURE
C. FROESCHLE et J.-P. SCHEIDECKER


PROBLÈMES NUMÉRIQUES
LIÉS A LA RECHERCHE DES SOLUTIONS DES TRANSFORMATIONS
PONCTUELLES CONSERVATIVES

Michel HENON
Observatorre de NICE


CHEERS \& Brejenc

> Toulouse, 1973, September 10-14


[^0]:    J. BERNUSSOU *, LIU HSU* et C. MIRA*

