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Abstract

Dynamical regimes observed in a bipolarized neodymium-doped fibre laser self Q-switched by a thin slice of a poly-
mer-based saturable absorber were recently reported [Martel G, Bennoud M, Ortac B, Chartier T, Nunzi J-M, Boudebs
G, et al. Dynamics of a vectorial neodymium-doped fibre laser passively Q switched by a polymer-based saturable
absorber. J Modern Opt 2004;51(1):85–95]. Among them, period-doubling cascade, chaotic and intermittent regimes
have been identified but due to the shortness of the time series available, it was not possible to investigate them with
the techniques of the nonlinear dynamical system theory. With the help of a rate-equation based bimode laser model, a
period-doubling cascade on tori and intermittent behaviors with underlying torus-like structure are investigated.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decades, the nonlinear dynamical system theory introduced various techniques for characterizing
aperiodic regimes [2,3]. These techniques can be applied to dynamical systems belonging to very different areas like
physics, chemistry or biology. One of the interesting aspects of these studies is to classify the different regimes observed
and to evidence some kinds of universal routes to chaos. Thus, the period-doubling cascade and the three types of inter-
mittencies have been observed in many various situations. All of them have been observed in laser systems. For
instance, a period-doubling cascade [4], type-I [5] and type-III intermittencies [6,7] as well as the Lorenz type of chaos
[8] have been observed in an optically pumped NH3 laser systems. Type-II intermittencies have been observed in a
GaAs/GaAlAs semiconductor laser [9] and in a driven laser with a saturable absorber [10]. There is another route
to chaos, more rarely observed, which consists in a period-doubling cascade of torus [11–15]. This route to chaos
has been identified [16] in the Zeghlache–Mandel equations for a detuned laser [17].

Recently, period-doubling cascade and intermittent behaviors were observed in a bipolarized neodymium-doped
fibre laser self Q switched by a thin slice of a polymer-based saturable absorber [1]. Unfortunately, the experimental
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set-up did not allow to record sufficiently long time series for clearly identifying the intermittent behavior. Thus, a bimo-
del laser model based on coupled-cavity atomic rate equations proposed by Bielawski et al. [18] is used to investigate in
details different typical dynamics. This model is sufficiently accurate to describe the experimental laser investigated in [1]
to expect a correspondence between the simulated and the observed behaviors.

Indeed, bipolarized eigenmodes of a fibre laser are multiple in essence [19]. Short time fluctuations are unavoidable
in such lasers. They require to average any phase-coupling effects and the significant variable becomes the total intensity
of each polarization mode. Thereby, a rate-equation model appears to be a sufficiently rigorous model in this case since
no evidence of any such coupling effect through the saturable absorber has been observed for the two polarized modes
in our experiments [1]. But note that in the case where two independent lasers are coupled by a common intra-cavity
saturable absorber [20–22], perturbed burst oscillations can be observed depending on the relative phase between them.
Thus, the intra-cavity saturable absorber medium is simply modeled as an in-intensity dependent nonlinear element
with similar saturation coefficients for the two modes. It means that factors C and D in the theoretical model by
[20–22] are equals to unity in the model described in this paper. It is not easy to known whether such a simplification
which restricts the number of free parameters—perhaps difficult to estimate experimentally [21]—limits the variety of
the observable dynamical regimes.

In this paper, we will mainly focus our attention on two different types of regimes, namely intermittencies superim-
posed to a torus-like structure and a period-doubling cascade on tori. In Section 2 the experimental set-up is briefly
described. The corresponding model is discussed in Section 3 and its dynamical analysis is detailed in Section 4. Section
5 is a conclusion.
2. Experimental configuration for a bipolarized fibre laser

The sketch of the experimental set-up is shown in Fig. 1 and is detailed in [1]. For completion let us describe its main
characteristics. The pump laser diode (LD) delivers a stabilized and linearly polarized 150 mW output beam at
kp = 810 nm. It is isolated from any optical feedback with an optical Faraday isolator (OFI) with an extinction ratio:
40 dB. A half-wave plate (HWp) at kp allows to rotate the pump polarization. The laser oscillates at k = 1.08 lm (neo-
dymium doped fibre) in a standard linear Fabry–Perot cavity arrangement. In order to allow modulation of the cavity
by the saturable absorber it is necessary to focus the intracavity beam using two microscope lenses (mo3,4). The satu-
rable absorber (SA) is made up of a thin slice (�3–5 lm) of organic dye deposited on a microscope glass plate [23] and is
inserted at the focal plane of the unity-magnified intracavity telescope (mo3,4). The saturable absorber is inserted
between one end of the fibre and its collimating microscope objective (mo1,2) to allow self Q-switch. Although such con-
figuration eliminates the intracavity telescope it has appeared less stable and less easy to use for identifying the pertinent
regimes and the route to chaos.
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Fig. 1. Experimental set-up. Elements not described in the text are DO, digitizing oscilloscope (BandPass = 600 MHz); LFSA, low
frequency spectrum analyzer; HW, half-wave plate at 1.08 lm; SPC, separator polarization cube; Ge, germanium fast photodiodes;
and Ch, chopper.
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3. Model

In order to simulate dynamics similar to the regime observed with the previous set-up, we start from a bimode laser
model based on coupled-cavity atomic rate equations, with phenomenological population inversions and pumping
parameters [18]. A more fundamental microscopic approach has been proposed [24] few years later. Although these
two models involved different formalisms, Chartier et al. [25] have shown that these models are isomorphismic. With
the incorporation of additive terms in order to model the internal cavity saturable absorber, the equations modeling our
laser can be written in the following adimensional form:
_x1 ¼ K� x1 � ðx2 þ by2Þx1

_x2 ¼ j �1þ ðx1 þ by1Þ �
a

1þ aðx2 þ y2Þ

� �
x2

_y1 ¼ cK� y1 � ðy2 þ bx2Þy1

_y2 ¼ j �1þ ðy1 þ bx1Þ �
a

1þ aðx2 þ y2Þ

� �
y2

8>>>>>>>><
>>>>>>>>:

ð1Þ
Each polarized mode (1 � X, 2 � Y) is described by its normalized intensity Ii and by its normalized population
inversion Di. Assuming that the decay time of the saturable absorber is very short (evaluated around 4 ns in [8]), we
have eliminated adiabatically the absorber variable. Time is normalized with respect to the population inversion decay
constant. Parameter a represents the ratio between the saturation intensity of the laser and the saturation intensity of
the absorber times a factor of 2. Parameter a is assumed to be the same for both polarizations. Literature [23,26] allows
to evaluate a around 1.6 for the neodymium-doped fibre laser and BDeN saturable absorber used here. However, global
dynamics predicted by Eqs. (1) have revealed themselves to be quasi insensitive to a change in parameter a over the
range [0.3;3.0]. This is an interesting result since it allows to develop similar results with other saturable absorber
and laser medium. a is the normalized population difference of the absorber without saturation. K is the pumping
parameter. c models the pumping anisotropy induced by the pump half-wave plate (HWp). In the following we have
assumed, without loss of generality, c < 1. This means that the first laser threshold is for mode X. The same normalized
lifetime, j, has been assumed for both laser fields. b is the cross-saturation coefficient describing how each laser field is
coupled with the population inversion of the other laser mode. Its value has been experimentally evaluated from the
evolution of the eigenfrequencies of the laser versus the pumping power [18]. Its measured value is about 0.53. Similar
developments as those performed in [27] but this time applied to (1) leads to the similar simple formula linking para-
meter c, parameter b and the two thresholds for the two modes (1Kth = XKth and 2Kth = YKth):
2Kth

1Kth

� ð1� bÞð1þ cÞ
2ðc� bÞ ð2Þ
For a given experimental position of the pump half-wave plate HWp allowing maximum separation for the two thresh-
olds in intensities, parameter c has been evaluated around 0.95. Recent analysis on bifurcation diagrams obtained with
ion-pair model of erbium-doped fibre laser has revealed the strong influence of parameters b and c on the route to chaos
[28]. Similar strong dependence is revealed also with Eq. (1) as shown below.

Numerical integration of system (1) has been performed with a fourth-order Runge–Kutta method with an adaptive
integration step. A typical chaotic behavior is shown in Fig. 2.

For all simulations, we use as initial conditions:
x1 ¼
K

1þ u1 þ bu2

x2 ¼ 0:01u1

y1 ¼
cK

1þ u2 þ bu1

y2 ¼ 0:01u2

8>>>>>>>><
>>>>>>>>:
where u1 = 0.445013 and u2 = 0.010008.
Note that system (1) is four-dimensional. Thus, quite complex dynamics can be expected, in the sense that the most

powerful techniques for characterizing the topology of chaotic attractors are only valid for three-dimensional systems
[3]. Our ability to characterize nonlinear dynamics is thus quite limited and far less documented for higher-dimensional
systems.



Fig. 2. Typical chaotic behavior of the bimode laser model (1) for K = 2.5, b = 0.5, j = 5000, c = 0.85, a = 0.0025 and a = 0.8.
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4. Dynamical analysis

4.1. Bifurcation diagram

In order to have a global view of the possible dynamical regimes solution of system (1), a bifurcation diagram is
computed using the Poincaré section defined as
P � fðx1;n; y1;n; y2;nÞ 2 R3j _x1;n ¼ 0;€x1;n > 0g ð3Þ
Coordinate x1,n is chosen to compute the diagrams shown in Fig. 3. This bifurcation diagram presents a large period-3
window at the right part of the (bifurcation) diagram. The corresponding period-3 orbit thus significantly structures the
dynamical regimes observed. Note that a period-3 limit cycle, not reported in [1], has been recently observed by finely
adjust the experimental parameters such as total and anisotropic losses, see [1]. At the extreme right part, an incomplete
inverse period-doubling cascade is observed (Fig. 3). A boundary crisis with an unstable orbits (not identified) inter-
rupts the cascade at K = 2.8074 (Fig. 3b). Over the interval K 2 [2.8074;2.904], depending on initial conditions, the
asymptotic behavior may settles down onto a period-2 limit cycle belonging to the inverse period-doubling cascade
or onto a period-3 limit cycle. At the end of the three branches at the lower part of the blow-up of the bifurcation dia-
gram (Fig. 3b), an unusual pattern is observed and is investigated now.

4.2. Period-doubling on the torus

One of the most familiar route to chaos is the period-doubling cascade evidenced by Feigenbaum [29] and Coullet
and Tresser [30], independently. Experimental evidences of this cascade have been observed in many situation. Never-
theless, it may appear that the cascade is disrupted or become unobservable due a boundary crisis. As previously men-
tioned, such a cascade can also occur on tori. One of the most favorable configuration for such a route to chaos is when
the system is driven by an external periodic force [11]. In that case, some strong conditions of irrationality between the
frequencies involved in the dynamics are required to ensure the existence of quasi-periodic behavior on the torus. A



Fig. 3. Bifurcation diagrams of the bimode laser model (1) versus parameter K. Parameter values: b = 0.5, j = 5000, c = 0.85,
a = 0.0025 and a = 0.8. (a) Bifurcation diagram (b) Blow-up.
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recent study has been proposed in the case where a Matsumoto-Chua circuit is driven by a periodic external force [15].
This cascade may be easily avoided when the conditions of irrationality are not exactly set as predicted by Arnéodo
et al. [11].

A cascade of period-doublings on tori has been recently observed in an autonomous system left invariant under a
continuous rotation symmetry [16]. In such a case, the bifurcations on tori results from the topological product of the
limit cycles of the period-doubling cascade by a continuous rotation. The symmetry property of the system are imposed
by the existence of a circle of fixed points that is robust against parameter changes.

The bimode laser model (1) is autonomous and has no continuous rotation symmetry. It has a dimension equal to 4
which is the minimum dimension required for a period-doubling cascade on tori as explained below. At the end of the
period-3 window, a first-return map to a Poincaré section of the phase portrait (Fig. 4a) reveals that the attractor is a
torus (Fig. 4b) for K = 2.889. This means that there is a Hopf bifurcation destabilizing the period-3 limit cycle. Two
irrational frequencies are thus involved and the behavior settles down onto a torus, that is, onto a quasi-periodic behav-
ior. When the pumping rate is slightly increased at K = 2.9, the torus section presents a doubled structure (Fig. 4c) looks
like a period-2 limit cycle. Let us call such a structure a period-2 torus. Such a Poincaré section without any self-inter-
section of the trajectory in the phase space is made possible since the phase space is four-dimensional. Otherwise the
determinism would have been violated. When K is increased again, a period-doubling cascade is observed (Fig. 4d
and e) up to an accumulation point beyond which a chaotic behavior is recovered (Fig. 4f) but the underlying torus-
like structure is still present. For pumping rate K greater than 2.9074, the ‘‘chaotic’’ regime in the torus disappears
and the asymptotic behavior is the period-2 limit cycle belonging to the inverse period-doubling cascade (Fig. 3b).



Fig. 4. A quasi-periodic regime (a) for the bimode laser model (1) with K = 2.889. Other parameter values are the same as for Fig. 3.
First-return map to a Poincaré section P shows three simple ‘‘ellipses’’ (b). Period-2 torus (c), period-4 torus (d), period-8 torus (e) and
a chaotic torus (f). (a) Quasi-periodic regime, K = 2.889; (b) first-return map, K = 2.889; (c) first-return map, K = 2.9; (d) first-return
map, K = 2.9011; (e) first-return map, K = 2.9014; (f) first-return map, K = 2.9017.
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Since we have a period-doubling cascade as a route to chaos, the chaotic attractors must be characterized by a first-
return map which has a differentiable maximum between two monotonic branches, that is, a parabola. Thus, the bifur-
cation diagram should be the same as for the logistic map. In particular, a period-3 window with a type-I intermittency
should be identified. This is done for K = 2.9027 (Fig. 5a) and the intermittency expected just before the periodic



Fig. 5. First-return map to a Poincaré section for the bimode laser model with b = 0.5, j = 5000, a = 0.005, c = 0.85 and a = 0.8.
(a) Period-3 window: K = 2.9027. (b) Type-I intermittency: K = 2.902666.
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window is obtained for K = 0.2902666 (Fig. 5b). The trajectory thus visits the ghost orbit to be created through a sad-
dle-node bifurcation during long ‘‘laminar phases’’. This is why the period-3 limit cycle is easily identified in the first-
return map shown in Fig. 5b.

A time series of the ‘‘intermittent’’ behavior in the torus is shown in Fig. 6. The period-3 limit cycle appears as
the three different sets of maxima. The modulation in the amplitude is due to the visit of the torus-like structure.
Fig. 6. Time series of the bimode laser model for the type-I intermittency on the torus. Parameter values: b = 0.5, j = 5000, a = 0.005,
c = 0.85, a = 0.8 and K = 2.902666.
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Unfortunately, there is no obvious difference in the time series between the period-3 limit cycle and the intermittent
regime in the torus. It is therefore rather difficult to distinguish the laminar phases from the chaotic bursts. Indeed,
it is almost impossible to identify such type-I intermittency on a torus from a single time series.

4.3. Intermittency in tori

Among our extended numerical investigations, we found another interesting dynamical regime. For a = 0.002 and
b = 0.25, a bifurcation diagram versus parameter a shows an interval over which chaotic behaviors are identified
(Fig. 7). The chaotic regime is observed for values of a 2 [1.757675;1.8085]. Note that around a = 1.796, a period-57
window is observed. Such a high-periodic orbit is identified using a 57th-return map for which the 57 different points
are located in the bisecting line. Beyond both sides of this interval, a period-2 limit cycle is observed. As usually
observed at the boundary between periodic and chaotic windows, intermittent behaviors are expected. Such intermit-
tency must occur through a tangent bifurcation.

Three types of intermittency have been proposed by Pomeau and Manneville [31]. Type-I intermittency is associated
with a saddle-node bifurcation of the limit cycle, type-II intermittency with a subcritical Hopf bifurcation, and type-III
with a subcritical period-doubling bifurcation [32]. In the last case, one of the characteristic of type-III intermittency is
that the oscillations have typically two components. During laminar phases where the trajectory approaches a ghost
orbit to be created, one component grows while the other decreases. Two successive laminar phases are separated by
chaotic bursts. Thus, for instance, a type-III intermittency has been observed just after a period-2 window in a NH3

laser [4]. A type-III intermittency could therefore be expected at both sides of the chaotic window shown in Fig. 7. This
is supported by the time series of variable x2 (Fig. 8) where the two components can be clearly identified.

Nevertheless, in the classical scenario for type-III intermittency, the period-2 limit cycle loses its stability at the tan-
gent bifurcation. Such a bifurcation does not occur in the case of the bimode laser model. In fact, the period-2 limit
cycle is still stable and there is a bistability between this cycle and the chaotic behavior shown in Fig. 8. The two com-
ponents identified in the time series are therefore not related to this period-2 limit cycle. A second-return map to a Poin-
caré section clearly shows that the period-2 limit cycle is not too close to this chaotic behavior (Fig. 9). The annular
shape of the map indicates that this behavior is mainly organized around a torus-like structure which is similar to
the section of the torus after the first period-doubling bifurcation (Fig. 4c). Nevertheless, in the present case, this is
not related to a period-3 limit cycle as in Fig. 4.

The underlying torus has been identified in varying parameter a. For a = 0.0021, there is a quasi-periodic regime
(Fig. 10a). Using a second-return map to represent the structure of its Poincaré section helps to evidence that this is
a period-2 torus as observed after the first period-doubling bifurcation (Fig. 4c). This already indicates that a four-
dimensional system is required to observed such a behavior. This torus is destabilized through a period-doubling bifur-
cation, and a torus with a section similar to a period-4 limit cycle is observed for a = 0.00205 (Fig. 10b). Decreasing
again a, some foldings occur on the structure of the torus and for a = 0.00202, a three-banded chaotic torus is observed
(Fig. 10c). Then, the torus is broken and the intermittent behavior in the torus shown in Fig. 9 is observed.
Fig. 7. Bifurcation diagram near the intermittent behavior observed for a = 0.002, b = 0.25, j = 5000, c = 0.85 and K = 1.5.



Fig. 8. Time series of variable y1 of the bimode laser model (1) with K = 1.5, b = 0.25, j = 5000, c = 0.85 and a = 0.002. (a)
a = 1.7576752 and (b) a = 1.8085.

Fig. 9. Second-return map to a Poincaré section with K = 1.5, b = 0.25, j = 5000, c = 0.85, a = 0.002 and a = 1.757675. The two
periodic points of the stable period-2 limit cycle which co-exists in the phase space are also shown.
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The torus breaking occurs through a tangent bifurcation between the torus and the bisecting line. Such a tangent
bifurcation is evidenced by using a second-return angular map computed as follows. The barycentre of the second-
return map is chosen as the reference point. An angle hn is defined for each point of the map shown in Fig. 9 with respect
to an horizontal segment, parallel to the abscissa and coming from the barycentre. Then, the angular second-return map
is obtained by plotting hn+2 versus hn as shown in Fig. 11. The existence of a small channel between this angular map
and the bisecting line induces the intermittent behavior.

A Fourier spectrum confirms the fact that the behavior is more complex than a quasi-periodic regime (Fig. 12). If
many isolated peaks can be identified, there is also a broadened band of frequencies. A similar Fourier spectra has been
experimentally obtained in [1] for intermittent regimes. This is quite typical of a chaotic regime. The superimposition of



Fig. 10. Second return maps to Poincaré section P for the bimode laser model (1) with the same parameter values as used for Fig. 9.
(a) Quasi-period-2 regime, a = 0.00210; (b) period-4 regime, a = 0.00205; and (c) chaotic regime in the torus, a = 0.00202.
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Fig. 11. Angular second-return map to a Poincaré section with K = 1.5, b = 0.25, j = 5000, c = 0.85, a = 0.002 and a = 1.75767605.

Fig. 12. Fourier spectrum for parameter values: K = 1.5, b = 0.25, j = 5000, c = 0.85, a = 0.002 and a = 1.8085.
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Fig. 13. Distribution of laminar lengths for K = 1.5, b = 0.25, j = 5000, c = 0.85, a = 0.002 and a = 1.7576752.
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the isolated peaks and the bands of frequencies is thus a signature of the chaotic regime in the torus. The tangent bifur-
cation associated with a chaotic behaviors leads us to conclude for an intermittency with an underlying torus-like struc-
ture. The usual type-III intermittency cannot occur on a simple torus with an orientable surface [32]. But in the present
case, the period-doubling bifurcation on the torus provides a torus with a nonorientable surface. Such a configuration is
only possible in a four-dimensional space. This is probably why the time series shown in Fig. 8 have the characteristic of
a type-III intermittency, that is, the increase of the sub-harmonic and the related decrease of the fundamental mode [32].
Turbulent bursts occur when the amplitude of the sub-harmonic is roughly equal to the amplitude of the fundamental
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mode. Just after, a nearly periodic regime appears again with a sub-harmonic having an arbitrary amplitude. The initial
amplitude determines the length of the laminar phase. Weaker the initial amplitude is, longer the laminar phase is.

Another important property which helps to distinguish between different types of intermittency is the laminar length
distribution. Such a distribution is not conceptually difficult but quite often hard to compute as in the case of the type-I
intermittent behavior in the torus discussed in the previous section. In the present case, the laminar phase are identified
using the time series shown in Fig. 8a. It has been observed that chaotic bursts occur when at least one maximum of the
oscillations is less than 1.15. The obtained distribution of laminar lengths is shown in Fig. 13. The distribution is not
exactly the expected one for a type-III intermittency. Instead of the usual shape characterized by a high peak for short
laminar phases associated with a long queue toward the long laminar phases, a bell-shape distribution is observed. Note
that for quite short laminar phases (less than 25 cycles), the length cannot be odd: this is again a strong signature of the
underlying period-2 torus. For longer laminar phases, this becomes possible, at least with the numerical convention we
choose for defining them. A long queue for the large laminar phases is observed. This is typical of a type-III intermit-
tency. Consequently, we could conclude that this intermittent behavior with an underlying torus-like structure is quite
close to a type-III intermittency.
5. Conclusion

A bimode laser model has been investigated as a guideline for identifying dynamical regimes in a bipolarized neo-
dymium-doped fibre laser self Q switched. This is a four-dimensional autonomous dynamical system. A period-dou-
bling cascade on tori have been identified before a chaotic regime which have a parabola as a first-return map. As
predicted by the logistic map, the corresponding type-I intermittency associated with the period-3 window has been
identified. The time series for such an intermittency does not allow to directly identify the intermittent behavior.

For another set of parameter values, another type of intermittency, again with an underlying torus-like structure has
been observed. Many of its characteristics leads us to make a parallel with a type-III intermittency. This intermittent
behavior is observed after two period-doubling bifurcations on tori.

These behaviors can be only observed in a four or higher-dimensional phase space. The bimode laser model has
therefore the minimal dimension required for observing these behaviors.
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[9] Sacher J, Elsässer W, Göbel EO. Intermittency in the coherence collapse of a semiconductor laser with external feedback. Phys

Rev Lett 1989;63(20):2224–7.
[10] San-Martin J, Antoranz JC. Type-II intermittency with a double reinjection channel: multintermittency. Phys Lett A

1996;219:69–73.
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