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We establish conditions for distinguishing between two topologically identical strange attractors that are
enclosed by identical bounding tori, one of which is generated by a flow restricted to that torus, the other of
which is generated by a flow in a different bounding torus and either imaged or lifted into the first bounding
torus.
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I. INTRODUCTION

The important properties of dynamical systems, and the
strange attractors they may generate, are invariant under a
smooth change of coordinates[1–3]. These include the num-
ber and type of fixed points and their stability; geometric
properties, such as fractal dimension; dynamical properties,
such as Lyapunov exponents; and topological properties,
such as topological entropy and the stretching and squeezing
mechanisms that generate strange attractors. These mecha-
nisms are understood inR3, where they are described by
branched manifolds. Branched manifolds summarize the
stretching and squeezing mechanisms that act repetitively to
build up strange attractors and to organize all their unstable
periodic orbits in a unique way[4,5]. For this reason, they
have been used to characterize low-dimensional strange at-
tractors, namely those with Lyapunov dimensiondL,3 [6].

Local diffeomorphisms identifyn points sn.1d in one
phase space[R3 (cover)] with a single point in another phase
space[R3 (image)] of the same dimension. Under a local
diffeomorphism, some of the properties of a strange attractor
are preserved and others are not. The number of fixed points
typically changes, while the stability of their images(or cov-
ers) does not; geometric properties, fractal properties, dy-
namical properties, and topological entropy are preserved but
global topological properties are not[7,8].

Local diffeomorphisms are often related to symmetries.
For example, if a dynamical system inR3 is equivariant(un-
changed) under rotations byp radians about thez axis
fRzspdg, the 2→1 local diffeomorphism

u = x2 − y2,

v = 2xy,

w = z, s1d

identifies pairs of rotation-related points off thez axis in the
covering phase spaceR3sx,y,zd with a single point in the
image phase spaceR3su,v ,wd [7,8]. This transformation

maps a strange attractor withRzspd symmetry to an image
strange attractor without symmetry. The two attractors are
locally identical. By the inverse process, an image attractor
without symmetry[with variablessu,v ,wd], can be “lifted”
to a covering attractor with symmetry[and coordinates
sx,y,zd].

In this work, we investigate two related questions.(i)
Suppose a covering attractor(Lorenz) is mapped to an im-
age, so that it looks topologically like a Rössler attractor.
How is it possible to distinguish this image from a Rössler
attractor?(ii ) Suppose a Rössler attractor is lifted to a cov-
ering attractor. How is it possible to distinguish this lift from
an attractor generated by an equivariant set of equations?

We resolve both questions by investigating the return
maps of the attractors. These carry very clear signatures of
the stretching and squeezing mechanisms that generate
chaos. These are the stretching and folding mechanism that
occurs in Rössler-like attractors, and the stretching and tear-
ing (and sometimes folding) mechanism, which occurs when
a symmetry is present.

Our results depend on two powerful tools that are used to
characterize strange attractors that exist in three-dimensional
spaces. These tools are branched manifolds and bounding
tori. In Sec. II, we review these structures and introduce their
properties that are relevant to the content of this work. In
Sec. III, we study return maps for strange attractors gener-
ated by flows in a bounding torus of genus 1[9,10]. For
highly dissipative dynamical systems, these look like smooth
curves with differentiable local extrema. In Sec. IV, we study
return maps for strange attractors generated by flows with
Rzspd symmetry. These flows exist in a torus of genus 3. The
Poincaré section consists of two generally disjoint compo-
nents, and the return map describes how initial conditions on
each component are mapped to these components[9,10]. In
Sec. V, we compare image dynamics with dynamics in a
genus-1 flow. The two differ in that for one the extrema in
the return map are differentiable, for the other they are not.
In Sec. VI, we compare covering dynamics with the dynam-
ics of a typical strange attractor that can be generated in a
genus-3 bounding torus. Return maps for both exhibit dis-
continuities. They differ in that in one case the one-sided
derivatives at the discontinuity are equal, in the other case
they are not. We summarize our results in Sec. VII.
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II. BACKGROUND

The results presented in this work depend on two struc-
tures that have been used to describe strange attractors that
can be generated by three-dimensional dynamical systems.
These are branched manifolds and bounding tori. We sum-
marize the properties of these two-dimensional objects that
are most important for the purposes of the present work.

A. Branched manifolds

Birman and Williams[4,5] assume that a flowẋ= fsxd, x
PR3, generates a strange attractor. They identify two points,
x and y, in phase space if they have the same asymptotic
future underf,

x , y if uxstd − ystdu →
t→`

0,

wherexs0d=x andys0d=y. This has the effect of projecting
the strange attractor along the stable direction onto a two-
dimensional structure called a branched manifold. This fails
to be a manifold because of singularities intrinsic to the dy-
namics: splitting points and branch lines[6]. The flow that

generates the strange attractor is projected to a semiflowf̄ on
the branched manifold. The Birman-Williams theorem states
that the topological organization of the unstable periodic or-
bits in the strange attractor(generated byf) remains un-
changed under the projection to the branched manifold(gen-

erated by f̄). This means, roughly speaking, that the
stretching and squeezing mechanisms that act repetitively in
phase space to build up the strange attractor(and simulta-
neously organize all the unstable periodic orbits in it) are
preserved under the Birman-Williams projection. As a result,
branched manifolds can be used to identify strange attractors
[6]. Since branched manifolds are discretely classifiable(by
integers), strange attractors are also discretely classifiable.

B. Bounding tori

Tsankov and Gilmore[9,10] have shown that branched
manifolds can be fattened up by surrounding each point in

them by a small ball of radius«. The semiflow f̄ on the
branched manifold can simultaneously be extended to a flow

f̃ on this three-dimensional manifold. This three-dimensional
manifold is a handlebody of genusg (a bounded three-
dimensional manifold withg nonintersecting holes drilled
through it) in which the branched manifold is embedded. Its

boundary is a torus of genusg. The flow f̃ is into this sur-
face, and once inside this surface the flow is attracted expo-
nentially to the branched manifold. The handlebody is an
inertial manifold for the branched manifold and its boundary
is a trapping surface: once the flow enters, it never gets out.
Tsankov and Gilmore have also shown that it is possible to
provide a canonical form for the flow on the genus-g surface.
The canonical form is a projection of this two-dimensional
surface onto a plane. In this projection, the genus-g torus
appears as a disk withg interior holes. The flow is nonsin-
gular on the(outer) disk boundary as well as onm of the
interior holes, and is in the same direction(e.g., clockwise)

on all m+1 boundaries. On the remainingn=g−m interior
holes there is an even number of singularities: 4, 6,…. The
total number of singularities on the surface of this genus-g
bounding torus is 2sg−1d. Bounding tori have eitherg=1 or
gù3.

C. Branch lines in Poincaré sections

Branched manifolds organize periodic orbits that can exist
in them in a very specific way[4–6]. So also do bounding
tori organize branched manifolds that can exist in them in a
very specific way[9,10]. A bounding torus withg=1 has a
Poincaré surface consisting of one disk that is transverse to

the flow f̃. The Poincaré surface for a bounding torus of
genusgù3 consists ofg−1 disjoint disks. The locations of
these disks are severely constrained by the singularities of

the flow f̃ on the boundary. Each branch line for a branched
manifold contained in a genus-g torus can be moved to one
of the components of the global Poincaré surface of section.
In the canonical projection, each component of the Poincaré
surface appears as an interval connecting the boundary of
one of them interior holes without singularities to the exte-
rior disk boundary. We use this fact to provide a natural
orientation for the branch linesg=1d or g−1 branch lines
sg.1d for branched manifolds contained in a genus-g torus.
Each branch line can be parametrized by a real numberx,
0øxø1, with x=0 corresponding to the interior boundary
andx=1 corresponding to the exterior boundary. We use this
order to provide a natural structure for the return map when
the Poincaré surface has more than one disconnected com-
ponent(see Sec. II D). Suitable modifications can be made
when the intersection of the branched manifold with a com-
ponent of the Poincaré section does not have the topology of
an interval but that of a circleS1, as occurs for the driven van
der Pol oscillator[6]. However, this does not occur for any of
the dynamical systems treated below, so these details will not
be treated here.

D. Structure of return maps

A strange attractor contained in a genus-1 bounding torus
has a single disk as a Poincaré surface of section and its
branched manifold has a single branch line that can be
moved so that it lies in this disk. The return map of the
branch line onto itself is a typical one-dimensional map, i.e.,
a logistic map for a horseshoe mechanism(cf., Fig. 1). To
create this return map, the branch line can be parametrized
from zero (“inside”) to one (“outside”). The x coordinate
s0øxø1d on this branch line is mapped to they coordinate
s0øyø1d according to its image, under the semiflow, when
it returns to the branch line.

For more complicated attractorssgù3d, the return map is
slightly more complicated. The global Poincaré surface of
section consists ofg−1 disjoint disks. The branched mani-
fold for the attractor hasg−1 branch lines, each of which can
be moved into one of the disks. Theg−1 branch lines can be
numbered in a canonical way[10], from 1 tog−1, according
to the order they are encountered following the outer disk
boundary in the direction of the flow from any initial posi-
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tion. Theseg−1 disjoint intervals can be laid out along a
horizontal axis. A coordinatexk, 0øxkø1, identifies an ini-
tial condition atxk on thekth branch line. A space could be
placed between each of theg−1 horizontal intervals to em-
phasize that they are disjoint. We did not do that here in the
interest of economizing space. Initial conditions along
branch linek flow to two other branch lines that are identi-
fied by the transition matrix[9,10] for the bounding torus. As
in the genus-1 case, the image is indicated along the vertical
axis. Images can occur ong−1 branch lines. These are ar-
ranged asg−1 vertical intervals. A space between each can
be included to emphasize that they are disjoint(we did not).
Under the semiflow, the source pointxk first encounters
branch linej at the unique pointyj = fsxkd after one(topologi-
cal) period. The return map has the structure of a set of
curves over theg−1 disjoint intervals. The curve over any
one horizontal interval extends over two vertical intervals.
Thus, pointsyj may have zero, one, two, or more preimages,
and the return mapfsxd is not one to one. With the conven-
tions adopted(xj =0 inside of branch linej , xj =1 outside of
the same branch line), construction of return mapsfsxd for
branched manifolds contained in genus-g bounding tori is
canonical. Such maps are shown in Figs. 2(c), 3(c), 5(a),
10(b), and 11(b).

III. RÖSSLER-LIKE DYNAMICS

We begin our study by constructing a return map for the
Rössler attractor[11]. This is done in the usual way. The
Rössler equations

ẋ = − y − z,

ẏ = x + ay,

ż= b + zsx − cd, s2d

are integrated for control parameter valuessa,b,cd
=s0.432,2.0,4.0d to generate a strange attractor. Intersec-
tionsyi with they-z plane throughxc (thex coordinate of the

unstable focus near the origin) with ẋ.0 are recorded and
used to create a first return mapyi+1 versusyi. This return
map is shown in Fig. 1. The return map looks like a smooth,
differentiable curve[6]. In fact, it has such an appearance
because the Rössler attractor is highly dissipative. More gen-
erally, such a return plot would exhibit some fuzziness since
the attractor is fractal. If the strange attractor is first projected
onto a branched manifold and the intersection of this
branched manifold with the Poincaré section were used to

FIG. 1. First return map for the Rössler attractor. Parameter
values:sa,b,cd=s0.432,2.0,4.0d.

FIG. 2. Projection of the Lorenz attractor onto(a) the x-z plane
and (b) the x-y plane. The two components of the global Poincaré
section are shown.(c) Return map on the two components of the
Poincaré section shows the branched manifold has four branchs.
Tearing occurs. Parameter values:sR,s ,bd=s28.0,10.0,8/3d.
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create a first return map, the result would rigorously be a
smooth, differentiable curve. Here and below we use the re-
turn map for an attractor in place of a return map for the
branched manifold since there is almost no observable dif-
ference between the two in the cases that we study.

The return map shown in Fig. 1 has a quadratic maxi-
mum. This occurs because as the flow spirals outward from
the unstable focus near the origin, it must decelerate before
being reinjected towards the unstable focus. In fact, this is a
common property of all strange attractors contained in a
bounding torus of genus 1 that are generated by smooth
flows [9,10]. Each monotonic component of the return map
can be identified with a branch of the characterizing
branched manifold, and all monotonic segments are sepa-
rated by a local maximum or minimum that is smooth, dif-
ferentiable, and generically quadratic. Deceleration is re-
sponsible for horizontal tangents at extrema.

The mechanism responsible for creating chaos in the
Rössler dynamical system and all similar dynamical systems
(smooth forcing terms, strange attractor contained in a
genus-1 torus) is stretching and folding. Differentiability of
the return map at its critical points is the fingerprint charac-
terizing folding.

IV. LORENZ-LIKE DYNAMICS

The Lorenz equations[12]

ẋ = − sx + sy,

ẏ = Rx− y − xz,

ż= − bz+ xy, s3d

were integrated for several different parameter values. Fig-
ures 2(a) and 2(b) show projections of the Lorenz attractor
generated with parameter valuessR,s ,bd=s28.0,10.0,8/3d
onto thex-z and thex-y planes. This attractor can be con-
tained in a bounding torus of genus 3[9,10]. The three
s=genusd holes surround the two foci and the saddle at the
origin. The global Poincaré section consists of two discon-
nected components. Both are shown in these figures. Figure
2(c) shows a return mapping of the Poincaré section to itself.
The orientation of the two branch lines has been chosen in
the natural way described in Sec. II: from inside(left) to
outside(right). This return map shows that some of the initial
conditions along the component of the Poincaré section near
the focus on the leftsLd return to the neighborhood ofL
(panelL-L), while initial conditions further away from this
fixed point flow fromL to R (panelL-R). Similar remarks
hold, by symmetry, for flows originating on the component
of the Poincaré section near the right-hand focusR. The dis-
continuity in the flow fromL (andR) is the fingerprint for the
stretching and tearing mechanism. In this case, the flow from
L accelerates away fromL, and as it nears the origin, it is
split into a part that returns toL and a part that flows to a
different component of the Poincaré section. The origin
serves as a splitting singularity. The branched manifold for
this attractor has four branches, one each describing the
flows from L→L, L→R, R→L, R→R. Acceleration is re-
sponsible for nonhorizontal tangents at extrema.

Figure 3 is similar to Fig. 2, but for the Lorenz attractor
generated for control parameter valuessR,s ,bd
=s65.584,13.0,2.4167d. The return map on the two compo-

FIG. 3. Projection of the Lorenz attractor onto(a) the x-z plane
and (b) the x-y plane. The two components of the global Poincaré
section are shown.(c) Return map on the two components of the
Poincaré section shows the branched manifold has six branches.
Tearing and folding occur. Parameter values:sR,s ,bd
=s65.584,13.0,2.4167d.
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nents of the Poincaré section is shown in Fig. 3(c). In this
case there is a discontinuity. It appears as the jump fromL to
R and the jump fromR to L. Folding also occurs—it appears
in the off-diagonal panelsL-R and R-L in the return map.
This return map shows clearly that the strange attractor, for
these parameter values, is generated by both tearing and fold-
ing mechanisms.

Figure 4 showsx-z and x-y projections of the Lorenz
attractor generated for control parameter valuessR,s ,bd
=s278.56,30.0,1.0d. The first return map can be taken in two
ways. If we use two disjoint components for a Poincaré sec-
tion, as in the case shown in Fig. 2, the return map is as
shown in Fig. 5(a). All initial conditions originating onL
flow to R, and vice versa. This is a clear signature that one of
the two components of the Poincaré section is superfluous.
This is the case since the strange attractor can be enclosed in
a bounding torus of genus 1. This can clearly be seen in Fig.
4(b). A single component(either L or R) suffices. The first
return map on this single component is shown in Fig. 5(b).
All extrema are differentiable, clearly indicating that this at-
tractor is generated by folding, not tearing.

As we vary the control parameter values in the Lorenz
attractor, we see that there is a transition in the mechanism
that generates the strange attractor: from tearing alone(Fig.
2), to tearing and folding(Fig. 3), to folding alone(Fig. 4).

V. IMAGE DYNAMICS

The transformation(1) can be used to map an attractor
with rotation symmetryfRzspdg to an image attractor without
symmetry. The Lorenz attractors shown in Figs. 2–4 were
mapped to their 2→1 images using this 2→1 local diffeo-
morphism. The image attractors are shown in Figs. 6(a)–8(a).
Each attractor is enclosed in a genus-1 bounding torus, so
that the global Poincaré surface of section consists of a single
connected component. This component is shown explicitly in
each of the Figs. 6(a)–8(a). The first return map of this
Poincaré section onto itself is shown in Figs. 6(b)–8(b).
These three return maps differ in significant ways.

The return map shown in Fig. 6(b) shows two branches
separated by a nondifferentiable extremum. This is a clear
signature that tearing occurs in the cover. The dynamical
system in Fig. 6(a) is the image of a dynamical system in
which tearing is responsible for generating chaotic behavior.
The nondifferentiability of the return map at the local maxi-
mum is due to the cover singularity which has been mapped
into the flow of the image.

The return map shown in Fig. 7(b) shows three branches.
The three are separated by a nondifferentiable maximum and

FIG. 4. Projection of the Lorenz attractor onto(a) the x-z plane
and (b) the x-y plane. Parameter values:sR,s ,bd
=s278.56,30.0,1.0d.

FIG. 5. First return maps for the Lorenz attractor shown in Fig.
4(a). The map onto the two componentsL and R shows that one
component suffices.(b) The return map on a single component
shows that stretching and folding is the operative mechanism. Both
maps show the flow has four branches.
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a differentiable minimum. The maximum shows that tearing
occurs in the cover, while the differentiable minimum shows
that folding also occurs in the cover.

Finally, the return map shown in Fig. 8(b) shows two
branches separated by a differentiable minimum. This attrac-
tor is generated by folding alone. It is not possible, in this
case, to claim that this is the image of a covering attractor,
since there is no evidence of tearing in this return map.

Bifurcation diagrams are simple to compute for simple
systems and more complicated to compute for more complex
systemssgenus.1d. We compute the bifurcation diagram for
the Lorenz attractor as the control parameters are changed
according to

R= R0 + rsR1 − R0d,

s = s0 + rss1 − s0d,

b = b0 + rsb1 − b0d, s4d

wherer is varied between 0 and 1.3. The parameter triples
are sR,s ,bd0=s28.0,10.0,8/3d and sR,s ,bd1=s278.56,

30.0,1.0d. The results are simply presented by displaying the
bifurcation diagram for the 2→1 images of these equivariant
systems. This is shown in Fig. 9. This diagram indicates
three distinct regimes of behavior. Tearing occurs forr,1
and folding occurs for 0.15,r. Both occur in the common
range 0.15,r,1. The image branched manifold exhibits
two, three, and two branches in these three regions, respec-
tively. The covers have twice as many branches.

The image of a symmetric attractor can sometimes be
created without explicitly constructing a local diffeomor-
phism. This occurs when a strange attractor is constructed by
embedding a nongeneric observable of the symmetric attrac-
tor. As a particular example, when thez variable of the Lo-
renz system is used to construct a strange attractor using any
kind of embedding, the resulting strange attractor is enclosed
in a genus-1 bounding torus and shows folding. However, its
return map is similar to that shown in Fig. 6(b), clearly in-
dicating that the fundamental mechanism generating chaos is
tearing.

FIG. 6. (a) Projection of the 2°1 image of the Lorenz attractor
onto thev-w plane. The global Poincaré section has only the one
component shown. First-return map on the Poincaré section shows
the branched manifold has two branches. The return map is not
differentiable everywhere, showing this is the image of a strange
attractor where tearing occurs. Parameter values:sR,s ,bd
=s28.0,10.0,8/3d.

FIG. 7. (a) Projection of the 2°1 image of the Lorenz attractor
onto thev-w plane. The global Poincaré section has only the one
component shown. First-return map on the Poincaré section shows
the branched manifold has three branches. The return map is not
differentiable everywhere, showing this is the image of a strange
attractor where tearing occurs. The differentiable minimum shows
that folding also occurs in the covering attractor. Parameter values:
sR,s ,bd=s65.584,13,2.4167d.
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VI. COVER DYNAMICS

Just as covering attractors can be projected to their images
using Eqs.(1) (or an analog for other symmetry), image at-
tractors can be lifted to covers using the inverse mapping.
For example, using Eqs.(1) backwards, the Rössler attractor

can be lifted to a double cover. In fact, it can be lifted to
many topologically inequivalent double covers[8]. A se-
quence of three double covers of the Rössler attractor is
shown in Figs. 10(a)—12(a). These covers are all invariant
under rotationsRzspd about thez axis. They differ from each
other in the location of the rotation axis.

The cover shown in Fig. 10(a) is created from the Rössler
attractor by inserting the rotation axis in the flow. Specifi-
cally, it is inserted in the “gap” between branches 0 and 1 in
the Rössler attractor. With this nongeneric position of thez
axis, the return map shown in Fig. 10(b) exhibits a jump at
the point of horizontal tangency. TheRzspd equivariant
double cover shown in Fig. 11(a) is constructed by inserting
thez axis somewhere in the orientation preserving(0) branch
of the Rössler attractor. In this case the jump from compo-
nent L to R in the Poincaré section splits branch 0. The
one-sided derivatives at the discontinuity are equal. This is
the signature that the cover is the lift of a strange attractor.

FIG. 8. (a) Projection of the 2°1 image of the Lorenz attractor
onto thev-w plane. The global Poincaré section has only the one
component shown. First-return map on the Poincaré section shows
the branched manifold has two branches. The return map is differ-
entiable everywhere, showing this is a strange attractor where fold-
ing occurs. Parameter values:sR,s ,bd=s278.56,30.0,1.0d.

FIG. 9. Bifurcation diagram for the image of the Lorenz attrac-
tor, with uxu plotted as a function ofr.

FIG. 10. (a) This double cover of the Rösler attractor can be
enclosed in a genus-3 bounding torus. The Poincaré section has two
components.(b) First-return map on the Poincaré section has four
panels. The discontinuity in the return map shows that this strange
attractor is generated by stretching and tearing. The equality of the
slopes at the discontinuity shows that it is the symmetric lift of a
strange attractor generated in a bounding torus of genus 1 and that
the two components of the Poincaré section are related by this sym-
metry. This strange attractor is described by a branched manifold
with four branches. Parameter values:sa,b,cd=s0.432,2.0,4.0d.
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The two one-sided derivatives at the jump shown in the re-
turn map of Fig. 10(b) are also equal, both equal to zero in
that case. The two covers, shown in Figs. 10(a) and 11(a), are
both enclosed by genus-3 bounding tori.

The equality of the one-sided derivatives on either side of
the jump discontinuity comes about because of the symmetry
of the cover. If the symmetry is broken, the one-sided deriva-
tives are not necessarily equal but the jump discontinuity,
which is a signature of tearing, will remain.

The double cover shown in Fig. 12(a) is created by insert-
ing the symmetry axis inside the “hole” in the Rössler attrac-
tor. This cover has topological indexsn0,n1d=s1,1d [8]. It
can be enclosed in a genus-1 bounding torus. The global
Poincaré section has a single connected component. This is
shown in Fig. 12(a). The return map on this component is
shown in Fig. 12(b). This shows four branches separated by
three quadratic extrema. This strange attractor is created by
the stretching and squeezing mechanism. From this return
map, it is not possible to infer that this strange attractor is the
lift of an image attractor, as no discontinuities are present.

VII. SUMMARY

We have described the fingerprints that can be used to
identify the origin of low dimensional strange attractors
when they are mapped among themselves by local diffeo-
morphisms. These fingerprints were explained in terms of
examples using the Rössler and the Lorenz attractors and
simple symmetry groups, but the results are independent of
the particular dynamical system and the symmetry group
used to create the local diffeomorphism. It is assumed that
the source terms for the dynamical systems are smooth.

We can distinguish between the image of an attractor en-
closed in a genus-g bounding torussgù3d and an attractor
generated by smooth forcing terms in a genus-1 attractor by
the degree of smoothness of the first return map. If the map
is not differentiable at some extremum, it is an image.

Covers that can be enclosed in a genus-g bounding torus
are described by their return maps on a global Poincaré sec-
tion. The section has exactlyg−1 components, usually dis-
joint [9,10]. Discontinuities show where tearing takes place.
Tearing is due to the presence of saddle splitting points. Dif-
ferentiable maxima show that folding also takes place.

FIG. 11. (a) Another double cover of the Rösler attractor. This
can also be enclosed in a genus-3 bounding torus.(b) The discon-
tinuity in the return map shows that this strange attractor is gener-
ated by stretching and tearing. The differentiable maxima show that
folding also takes place. The equality of the slopes at the disconti-
nuity shows that it is the symmetric lift of a strange attractor gen-
erated in a bounding torus of genus 1. This strange attractor is
described by a branched manifold with six branches. Parameter
values:sa,b,cd=s0.432,2.0,4.0d.

FIG. 12. (a) One double cover of the Rössler attractor that can
be enclosed in a genus-1 bounding torus. The Poincaré section has
a single component.(b) First-return map on the Poincaré section.
This strange attractor is generated by stretching and folding, and is
described by a branched manifold with four branches. Parameter
values:sa,b,cd=s0.432,2.0,4.0d.

BYRNE, GILMORE, AND LETELLIER PHYSICAL REVIEW E70, 056214(2004)

056214-8



Equality of the two one-sided derivatives at a discontinuity
shows that the cover is the symmetric lift of a strange attrac-
tor whose return map is differentiable—that is, a strange at-
tractor generated by smooth forcing functions in a genus-1
bounding torus.
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